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1 EXECUTIVE SUMMARY

As the depletion of fossil fuels continues relentlessly, there is a shift in focus in the research com-
munity towards the optimization of renewable energy technologies. One popular field of research is
wind farm control, in which turbines are coordinated to increase the performance of the entire wind
farm. Two popular methods for wind farm control are axial induction control and wake steering. Axial
induction control reduces the energy extraction of an upstream turbine to reduce the wake effects
on downstream turbines. Wake steering displaces thewake downstreamby purposefullymisaligning
the upstream turbine’s rotor plane with the incoming air stream.
The European CL-Windcon project revolves around the development, integration and validation of
closed-loop control solutions for current and future wind turbine power plants. The workpackage
corresponding to this deliverable is concerned with wind farm controller synthesis. In previous work
in this workpackage, separate wind farm control algorithms were synthesized with a single purpose
in mind. These purposes included, amongst others, axial induction control for power maximization,
wake redirection for powermaximization, axial induction control for turbine loadmitigation, and axial
induction control for active power control. In the deliverable at hand, several control methods are
unified to provide comprehensive, integrated control solutions that further improve the efficiency of
wind farms.
Several contributions on integrated control are depicted in this work. Firstly, a detailed analysis is per-
formed on the differences of axial induction control, wake redirection control, and the combination
of the two, in pursuit of maximum energy extraction. Two wind farm layouts are investigated, being
an onshore wind farm in Italy and a virtual farm with three aligned 10MWwind turbines. The control
setpoints are optimized using the static surrogate model FLORIS. The potential gains as predicted
by FLORIS are calculated for a range of wind directions and two turbulence levels. For the Italian
wind farm, at low turbulence levels and at situations with heavy wake losses, wake redirection con-
trol shows a potential increase in energy extraction of up to 17% in power extraction, axial induction
control shows a potential increase of 6%, and the combination shows a potential of 19% in FLORIS.
For the three-turbine case, these gains go up to 20% for wake redirection, decrease to 3% for axial
induction control, and show a combined gain of 20% in FLORIS. Future work involves updating the
surrogate model, improving the optimization algorithm, investigating the controller’s performance
undermore realistic inflow conditions and at a higher fidelity, and assessing the controller’s influence
on the mechnical loads on the turbines.
Secondly, in continuation of the previous contribution, a wind farm controller combining axial induc-
tion control andwake redirection control for wind farmpowermaximization ismatured and assessed
in a high-fidelity environment. For this reason, a closed-loop control framework is proposed using
FLORIS that is used for continuous ambient-condition estimation and control-setpoint optimization.
High-fidelity simulation results show that the surrogate model FLORIS does not predict any gains in
energy yield for axial induction control, and the controller thereby exclusively employs wake steering
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for power maximization. This is largely in agreement with the foregoing analysis. Furthermore, the
controller was then robustified using a theoretical measure of observability, which ensures that only
the parameters that can be estimated, are estimated. Finally, an integrated closed-loop control so-
lution was proposed and tested in high-fidelity simulation using varying inflow conditions, showing
an increase of 1% to 9% in energy extraction compared to greedy operation.
Thirdly, a combined feedback-feedforward controller is proposed forwake redirection control inwind
farms. In this strategy, FLORIS is used to assign a set of yaw misalignment angles to each turbine to
maximize the energy extraction of the farm in a feedforward approach. Due to the uncertainties
commonly present in such steady-state surrogate models, the assigned yaw angles are often under-
or overestimated, effectively leading to suboptimal energy extraction. A feedback control scheme is
then superimposed to correct the yaw angles and thereby achieve the desired wake displacement.
To this extend, a lidar is used to actively measure the wake displacement. High-fidelity simulations
show a promising increase in energy extraction of up to 16.9% compared to a baseline controller
for a three-by-three wind farm layout. In future work, the proposed controller should be tested for
changing inflow conditions.
Fourthly, a control solution that integrates turbine derating for a multi-objective cost function that
trades off mechanical loads with energy yield is presented. To do so, a loads database was con-
structed, which is used together with a DEL estimation method. This database was combined with a
variant of the FLORIS surrogate model to provide predictions on the turbine fatigue loads and power
production as a function of the inflow conditions. Furthermore, a solution was also provided for the
estimation of such ambient conditions using upstream turbinemeasurement data, which is an essen-
tial component to any model-based wind farm control solution. The control solution was validated
successfully in the medium-fidelity simulation environment FAST.Farm.
Fifthly, awind farmcontrol solution is outlined that leverages the simplified surrogatemodel LongSim.
This controller is synthesized for the onshore wind farm in Sedini on the island of Sardinia, Italy for
real-world experiments on axial induction control for power maximization. Special attention is paid
towards the shift from static to dynamic control. While axial induction control has often appeared
impractical for powermaximization, LongSim does predict increases up to the order of 10% in energy
extraction by derating several upstream turbines for conditions with large wake losses (i.e., at a low
turbulence intensity and for the right wind direction). Moreover, special attention was paid towards
the shift from steady control solutions to a more realistic, dynamic environment, thereby rendering
the controller one of the most prominent wind farm control solutions presented in this report.
Sixthly, a concise follow-up is presented on a model-free data-driven approach for axial induction
control for powermaximization. It was concluded that thismodel-freewind farm controller proposed
in previous work is not feasible. This control solution was therefore discontinued.
Seventhly, a wind farm control solution for secondary frequency regulation is outlined. This wind
farm control solution leverages axial induction control to track a demanded power signal (e.g., as-
signed by transmission system operators) to allow the integration of energy from the wind farm with
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the electricity grid. Since there is a plenthora of different derating strategies in the farm, a secondary
objective, fatigue load minimization, is introduced. High-fidelity simulations show that the control
solution is able to track reference power signals in timescales of 1 to 10 seconds, while reducing
temporal fluctuations of the rotor axial force of each turbine. Moreover, yaw-based wake steering
is leveraged to maximize the possible power production in situations where the demanded power
signal exceeds the currently available power. While successful, more work is necessary to fully inte-
grate this concept of yaw-based wake steering in the active power control solution. Another future
research direction is the assessment of the controller under realistic, time-varying inflow conditions.
Looking ahead, in the next workpackage of this European project, several of these control algorithms
will be tested on various levels of fidelity; in high-fidelity simulation, wind tunnel experiments and/or
field campaigns on an onshorewind farm in Sedini, on the island of Sardinia, Italy. This should further
verify, validate and increase the trust in these control solutions.
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2 INTRODUCTION

As the depletion of fossil fuels continues relentlessly, there is a shift in focus in the research com-
munity towards the optimization of renewable energy technologies. A popular technology that is
increasingly explored in the research is wind farm control, in which turbines are operated in a col-
lective fashion to increase the overall performance (e.g., energy yield or component lifetime) of the
entire farm. Two popular methods for wind farm control are explored in the literature:

• Axial induction control, or derating control. In this control methodology, the turbines are oper-
ated to extract less energy from the flow than in greedy operation. This leaves more energy in
the flow downstream, and reduces the increase in the turbulence intensity due to blade-flow
interactions. Axial induction control is often used for active power control, which focuses on in-
tegration of wind energy with the electricity grid. Another popular objective for axial induction
control is load mitigation and load distribution between turbines.

• Wake steering or wake redirection control. In this control methodology, the rotor plane is pur-
posefully misaligned with the incoming flow to induce a lateral (yaw-based) or vertical force
(tilt-based) on the incoming flow, which then induces a lateral/vertical displacement of the
wake downstream. This can be used to steer wakes away from the downstream turbines. This
methodology is typically used for power maximization in wind farms.

The European CL-Windcon project revolves around the development, integration and validation of
closed-loop control solutions for current and future wind turbine power plants. For this purpose, the
project contains three technical workpackage, along side several business-oriented, management
and ethics workpackages. The three technical workpackages are:

WP1. mathematical model development,
WP2. controller synthesis,
WP3. algorithm verification and validation.

This document details work performed for workpackage 2: controller synthesis. In previous work in
this workpackage [2], separate wind farm control algorithms were synthesized with a single purpose
in mind. These purposes included, amongst others, axial induction control for power maximization,
wake redirection for power maximization, axial induction control for load mitigation, and axial in-
duction control for active power control. In this deliverable, several control methods are unified to
provide comprehensive, integrated control solutions.
The structure of the report is as follows:

• In Chapter 3, the effects of axial induction control, wake redirection control, and the combi-
nation of the two, are explored in detail. The proposed wind farm control solution pursues
power maximization and therefore leverages the static surrogate model FLORIS developed by
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NREL and TUDelft. The simulation studies are also performed with FLORIS, thereby assessing
the upper limits of the potential of these methods.

• In Chapter 4, in continuation of Chapter 3, axial induction control is combined with wake redi-
rection control for wind farm power maximization. Furthermore, a closed-loop control frame-
work is proposedusing FLORIS for continuous ambient-condition estimation and control-setpoint
optimization. The control solution is then tested in a high-fidelity environment with time-
varying inflow conditions as first of its kind.

• In Chapter 5, a feedforward-feedback wind farm controller is synthesized that employs wake
redirection control for power maximization. The FLORIS model is used to determine the opti-
mal yaw misalignment angles for power maximization in a feedforward setting. Then, due to
the ubiqutuous model uncertainties, a feedback loop is integrated that measures (using a lidar
system) and corrects the wake displacement by further adjusting the yaw angle. The control
strategy is tested in high-fidelity simulation.

• In Chapter 6, a control solution leveraging a variant on FLORIS is presented that integrates
turbine derating for amulti-objective cost function that trades offmechanical loadswith energy
yield. This chapter also depicts how the ambient conditions, which are necessary for the control
solution, can be derived from wind turbine measurement data. The control solution is then
validated in a medium-fidelity simulation environment called FAST.Farm.

• In Chapter 7, a wind farm control solution is outlined that leverages the simplified surrogate
model LongSim. This controller is synthesized for the onshore wind farm in Sedini on the island
of Sardinia, Italy for real-world experiments on axial induction control for powermaximization.
Special attention is paid towards the shift from static to dynamic control.

• In Chapter 8, a concise follow-up is presented on a model-free data-driven approach for axial
induction control for power maximization.

• In Chapter 9, a wind farm control solution for active power control is outlined. This controller
uses axial induction control to have a wind farm produce a demanded amount of power while
minimizing the fatigue loads of the turbines. Additionally, concepts of wake steering are lever-
aged to maximize the power production when the demanded power exceeds the available
power.

Finally, the report is concluded in Chapter 10.
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3 ON COMBINED YAW AND PITCH BASED ACTIVE WAKE CONTROL

3.1 Introduction

The goal of a wind farm control strategy is twofold [12]: first, maximizing the wind farm’s power
production and, secondly, mitigating the associated mechanical loads acting on each wind turbine
in the farm. Such loads are the result of each turbine’s gravitational, inertial, and aerodynamical
effects, and due to the interaction with the neighboring upstream wind turbines in the farm, i.e., the
so-called wake effects. In order to alleviate the local loads of a single wind turbine, several control
schemes have been developed in the past two decades (see for instance [46, 40], and Chapter 3 of
Deliverable D2.1 for a summary). Whereas for mechanical loads due to wakes, few results have been
proposed, see [42, 44, 43] for a wind farm control literature review, and [12] for a tutorial on this
topic.
Some notable works on wind farm control are the following. The axial-induction-based control (AIC)
approach in [5], where upstram wind turbines production is reduced by changing the axial induction
factor so that the downstream turbines can generate more power. The active wake control (AWC)
optimizationmethod forweak steering of [41], in which, roughly speaking, wakes are redirected aside
from downstream wind turbines, also for increasing the power production of downstream turbines.
A first exploratory study on combined AIC and wake steering control methods is presented in [16],
where a simplewind farmconsisting of a rowof six generic 2MW wind turbines is considered. Finally,
in the recent work of [53], the design and analysis of a wake steering controller with wind direction
variability is presented for a two-turbine array using the FLOw Redirection and Induction in Steady
State (FLORIS) control-oriented wake model.
Among the above wind farm control strategies, we highlight the optimization based AWC method
in [41], where two classes of AWC methods are compared: pitch-based AWC, which is the pitch-
based AIC described in [5]; and yaw-based AWC that consists in operating upstream turbines at yaw
misalignment. For comparing the possible benefits and/or disadvantages of these twoAWCmethods,
an optimization of the yearly power production task is assigned to the pitch-based AWC, whereas a
load-based lifetime power optimization task is assigned to the yaw-based AWC1. This is a suitable
comparison criteria since fatigue loads reduction is an implicit feature of derating by pitching [1]. Both
AWC methods are optimized for several full-scale commercial wind farms with different layouts and
turbine sizes. The conclusion is that yaw-based AWC considerably increases the power production
with respect to its pitch counterpart (which is limited to wind farms with turbine distances of up to
6D to 7D, withD the turbine diameter) and reduce the loads on the considered wind components.
From a practical point of view, experimental validations of AWC are presented in the very recent
works of [35] and [28]. In the first reference, a pitch-based AWC field test is presented, the analysis
of the one year measurements under this control scheme indicates that the power production is
increased. The optimization algorithm used in the strategy of [35] is implemented with the wake

1Both, pitch and yaw based AWCmethods can be applied to either power optimization or power and loads optimization
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model FarmFlow from ECN part of TNO. In the case of yaw-based AWC, an initial stage of a field
campaign of wake steering at a commercial wind farm is presented in [28]. For two closely spaced
turbines, an approximate 14% increase in energy was measured on the downstream turbine over a
10 degrees sector, with a 4% increase in energy when accounting for losses of the upstream turbine.
These gains in energy are consistent to predictions made using the FLORIS model [20] [25].
3.2 Problem formulation

Motivated by the simulated and experimental benefits of the pitch-based and yaw-based AWCmeth-
ods described above, as well as the benefits showed in the exploratory study of combined yaw and
pitch (CYP) based AWC in [16], in this chapter we concentrate in further exploring the CYP-based AWC
strategy on different realistic wind farm layouts. The performance of this strategy will be measured
in terms of power production.
3.2.1 Wind farm layouts

Two reference wind farms in the CL-Windcon project are considered, namely the lined three turbines
case and the Sedini wind farm. These two wind farms are briefly described bellow:
Sedini wind farm case

Since field experiments are planned to be carried out in the Enel Green Power’s Sedini wind farm
during the second and third year of this project; it is pertinent to evaluate the performance of the
CYP-based AWC strategy on this farm.

• Turbines: The turbines used in for this farm are GE1.5 s defined in Section 3.5 of deliverable
CL-Windcon-D1.1-Definitions.

• Layout: The turbines are not aligned in regular rows, they are placed in an area keeping an
irregular distance among the turbines, see Figure 1. This layout offers flexibility for exploring
different scenarios by clustering a number of wind turbines. For instance, in Figure 1 are shown
the test arrays of Sedini wind farm that are considered in this chapter; Test array 1 consisting
of four turbines, while Test array 2 consists of nine turbines.
Orographic effects are not accounted in the present study.

Three turbines case

• Turbines: The considered turbine is the DTU 10 MW , which was developed within the FP7
Project INNWIND. All its data is publicly available, allowing replication of the results. The turbine
parameters can be found in [9].

• Layout: Three turbines on a line perpendicular to the predominant wind direction in full wake
overlapping; see Figure 2. The spacing among the wind turbines considered here is of 7D.
This differs from the same case in deliverable CL-Windcon-D1.1, where the first and second
turbines are on the straight line, and the last one is shifted to the right in the x-direction.
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Test array 1

Test array 1

Figure 1. Sedini wind farm layout. Plot generated with FLORIS [20] .

21

Figure 2. Three turbines wind farm layout.

3.2.2 Wind farm model

The present study will be performed using the Matlab version of the steady-state wind farm con-
trol oriented model FLORIS. This wind farm model has been created for real-time online wind farm
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control, low-fidelity offline wind farm analysis and layout optimization purposes. For further details
check Chapter 6 of Deliverable CL-Windcon-D1.2-Wind farm models and [20] .
3.2.3 Cases of study

The simulation will be carried on three wind farm scenarios as summarized in the following table.
Table 1. Turbulence intensity and wind velocity considered in the simulation study

Wind farm
scenarios

Turbulence intensity (TI) Wind speed [m/s]
Test array 1 Sedini 0.10 0.16 8
Test array 2 Sedini 0.10 0.16 8
Three turbines case 0.06 0.16 8

3.3 Optimization algorithm

The CYP-based ACW in the present chapter will be implemented for maximizing the wind power
production. The FLORIS built in optimization algorithm will be used for finding optimal yaw and pitch
angles for each wind turbine in the farm under yaw-based, pitch-based and CYP-based AWC.
Algorithm 1: FLORIS power maximization algorithm
x0 ← Turbine.inputdata(Yaw, Pitch), ; run FLORIS(x0);
P0 ←

∑N
i=1 FLORIS.outputdata.poweri(x0) N = #turbines;

x← FLORIS.outputdata.(Yaw, Pitch); flag← 1;
while flag = 1 do

J(x)← PT = −∑N
i=1 FLORIS.poweri(x);

xopt ← min
xlb≤x≤xup

J(x);
run FLORIS(xopt);
PT ←

∑N
i=1 FLORIS.outputdata.poweri(xopt);

if PT > P0 then
x← xopt; P0 ← PT ;

else
flag← 0;
disp(Optimization was unsuccessful. Sticking to old control settings.);

end
end

The optimization method for minimizing the cost function J(x) is based on the fmincon algorithm
from the Matlab Optimization toolbox, which is a static nonlinear constrained gradient based opti-
mization method. The main disadvantage of this is that the minimum might not be global, but local
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due to the imposed constrains. Nevertheless, for the present exploratory study, with a steady-state
wind farm model, it is enough2.
3.4 Results and discussions

In this section the results of the application of CYP-based AWC on the wind farm scenarios described
in Table 1 are presented and compared with the standard yaw-based and pitch-based AWCmethods.
3.4.1 Sedini wind farm: Test array 1
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(a) Layout with greedy control
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(b) Layout with yaw-based AWC
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(c) Layout with pitch-based AWC
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(d) Layout with CYP-based AWC
Figure 3. Flow velocities [m/s] at hub height for Test array 1 of the Sedini

wind farm at CYP-based maximum power wind direction (230o) and TI=0.10

The velocity flow performance of the Sedini wind farm Test array 1 is shown in Figure 3 for the three
aforementioned control configurations. It can be observed in Figure 3(a) that due to Turbines T26,
T27 and T28 are almost aligned on a straight line, there is wake overlapping that causes the down-
stream turbine T26 to have velocity flow region of very small magnitude. In the case of Turbine T25,
the downstream smallestmagnitude reduction of the velocity flow is only partial because this turbine

2Further studies consist in implementing the CYP-based AWC scheme with the optimization method in [41] on FLORIS
or FarmFlow wind farm models.
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is out of the aforementioned straight line.
The performance of the same test array but under the yaw-based AWC strategy is shown in Figure
3(b). It is clear that, due to yaw-misalignment, the downstream velocity flow performance for tur-
bines T26 and T25 is considerably improved in magnitude with respect to previous case. This implies
an expected increase of the whole Test array 1 power production.
On the other hand, Figure 3(c) shows the velocity flow behavior of the Test array 1 but under pitch-
based AWC. Qualitatively speaking, the performance is also improved with respect to the greedy
strategy in Figure 3(a), but worse than 3(b) in terms of velocity flow magnitude. Therefore, the ex-
pected power production is smaller than the one under yaw-based AWC.
Finally, in Figure 3(d), the CYP-based AWC strategy is evaluated. By inspection it is clear that with this
strategy, the Test array 1 has the best velocity flow performance. The magnitude of downstream
velocity flow of turbine T28 is similar to the one under both, yaw-based and pitch-based AWC meth-
ods. Notice that the downstream velocity flow of turbine T26 is considerably higher than in the other
control configurations. This in turn implies that turbine T25 is expected to produce the most power
only under CYP-based AWC, since its yaw angle is kept fixed in all control modes.
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Figure 4. Test array 1 of the Sedini wind farm under yaw-based AWC and TI=0.10

All the above conclusions are confirmed quantitatively in the following figures, modulus FLORIS farm
model results. Figure 4 shows each turbine yaw angle (upper plot), and total wind farm power pro-
duction gain (bottom plot) under yaw-based AWC. The maximum power production occurs around
wind direction 230o, with an increase of 15% with respect to the conventional greedy scheme. The
main disadvantage of yaw-based AWC is the occurrence of abrupt yaw angles changes as it can be
observed on the top plot of Figure 4. In fact, turbines T26, T27 and T28 experience fast yaw angle
changes at certain wind directions. It can also be observed that turbine T25 is practically in greedy
mode. Similar conclusions with respect to the power improvement of yaw misalignment were ob-
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tained in [40], where an analysis with the FarmFlow model of ECN part of TNO were carried out, and
validated in [45] with different methods from data.
The performance of pitch-based AWC is shown in Figure 5 in terms of pitch angles (top plot) and
power gain (bottom plot). In this case, there is an increase of power production of 5%, with respect
to the greedy strategy. Indeed, it can be seen in Figure 5 that wind turbine T25 is in greedy config-
uration, while the upstream wind turbines T26, T27 and T28 are pitching, for maximizing the total
power production. Despite the smaller power production gain of pitch-based AWC with respect to
the yaw-based counterpart, this possesses the extra benefit of pitch-based controllers of loads miti-
gation, as explained in [5, 40]. Interestingly, the maximum power production occurs at 234o, that is,
in the neighborhood of the maximum power production direction with yaw-based AWC. This already
suggest a possible production improvement by combining both AWC approaches.
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Figure 5. Test array 1 of the Sedini wind farm under pitch-based AWC and TI=0.10

The farmbehavior of the Test array 1 under CYP-based AWC is shown in Figure 6; the top plot contains
each turbine’s yaw angle for different wind directions, the middle plot shows each turbine’s pitch
angle in the same wind directions interval, and the bottom plot shows the power production gain
performance of the test array under the three different AWC methods discussed in this work.
From Figure 6, it is clear that the CYP-based AWC scheme has the highest maximum power gain
(16.31%) with respect to the yaw-based (15.31%) and pitch based (5.5%) strategies, thanks to the si-
multaneous yawing and pitching. In this case, the maximum power production occurs at the wind
direction 236o, which is approximately the average of themaximum power direction of the other two
AWC methods. The resulting power gain performance with CYP-based AWC is superior not only at
the maximum power direction, but over the whole wind direction interval under consideration. Also
notice that the power gain decrease at 233o of the yaw-based strategy in Figure 4 is compensated by
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Figure 6. Test array 1 of the Sedini wind farm under CYP-based AWC and TI=0.10

the pitching action in the CYP-based method, see bottom plot of Figure 6.
Also notice that each wind turbine’s yaw angle performance under CYP-based AWC is quite close to
the yaw angles performance under only yaw-based AWC (see top plot of Figure 4); with small varia-
tions around the bounds of the wind direction interval in consideration. This is not the case for the
wind turbines pitch angles under CYP-based AWC and its pitch-based counterpart. In fact, the only
pitch angle that is saturated to its upper bound under the CYP-based scheme is the one from wind
turbine T27; whereas in the pitch-based method, wind turbines T26, T27 and T28 reach the pitch
angle upper bound at different wind directions, see Figure 5.
As expected, wind turbine T25 under CYP-based is kept in greedy mode in all the considered wind
directions.
The simulations results for turbulence intensity TI=0.16 in the Test array 1 of the Sedini wind farm
exhibit a similar performance as the above case with TI=0.10. For this reason, velocity flow, angles
actions and power plots are not presented. Instead, the maximum power gain results are summa-
rized in Table 2. The same conclusions hold, and CYP-based AWC is the scheme that shows the best
power production gain result. Moreover, the power gain results from one turbulence intensity to the
other differ by a factor of 0.858 in average under all control methods.
3.4.2 Sedini wind farm: Test array 2

Now the Test array 2 of the Sedini wind farm (see Figure 1) is considered. The clustered turbines are
distributed on a zigzag-like pattern so that full overlapping is avoided.
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Table 2. Controlled maximum power gain of Test array 1 for different turbulence intensity

Turbulence intensity (TI) Maximum power gain
Yaw-based Pitch-based CYP-based

0.10 1.1531 1.055 1.1631
0.16 1.003 1.001 1.004
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(a) Layout with greedy control
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(b) Layout with yaw-based AWC
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(c) Layout with pitch-based AWC
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(d) Layout with CYP-based AWC
Figure 7. Flow velocities [m/s] at hub for Test array 2 of the Sedini
wind farm at maximum power wind direction (237o) and TI=0.10

Similar to the Test array 1, it is possible to see in Figure 7 that the last downstream wind turbine T13
is kept under greedy control in all AWC strategies. It is also appreciated that the wake losses are the
lowest under CYP control, with yaw-based AWC in second place, pitch-based in in third place, and the
greedy control in last place as expected.
The performance of each turbine’s yaw and pitch angles along an interval of wind directions are
shown in the top andmiddle plots of Figure 8; whereas the power gain behavior on the same interval
of wind directions is shown in the bottom plot.
As expected from the previous velocity flow analysis, it is clear that the power production gain of the
Test array 2 under CYP-based AWC (19.18%) is higher than with the yaw-based (16.71%) and pitch-
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based (6.43%) AWC counterparts. Notice that in the neighborhood of maximum power production
wind direction (227o), the yaw and pitch angles have different values are simultaneously active.
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Figure 8. Test array 1 of the Sedini wind farm under CYP-based AWC and TI=0.10

Similar to the Test array 1, Table 3 contains the maximum power gain under the three AWCmethods
that considered in this chapter, for two different turbulence intensity values. The power gains from
the first turbulence intensity to the other differ by a factor of around 0.9717, in average.

Table 3. Controlled maximum power gain of Test array 2 for different turbulence intensity

Turbulence intensity (TI) Maximum power gain
Yaw-based Pitch-based CYP-based

0.06 1.1671 1.0643 1.1918
0.16 1.132 1.047 1.146

3.4.3 Three turbine case in full wake overlapping

This section studies on the three turbine layout of Figure 2.
This case is particularly interesting for studying the effect of CYP-based AWC due to the maximum
farm power production occurs exactly at the wind direction (180o) in which the three turbines are in
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(a) Layout without control
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(b) Layout with yaw-based AWC
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(c) Layout with pitch-based AWC
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(d) Layout with CYP-based AWC
Figure 9. Three turbines case at maximum power wind direction (180o) and TI=0.06

full wake overlapping. The velocity flow performance a maximum power gain production for each of
the control methods used in this chapter is shown in Figure 9, where a turbulence intensity of 0.06
has been considered.
It can be seen that pitch-based control (Figure 9(b)) improves the wake effects from turbine T1 to
turbine T2, but for the rest is close to the wakes effects with greedy control (Figure 9(a)). Indeed, it is
shown in the bottom plot of Figure 10 that the power gain increase is of 3%, which is much smaller
compared to the other Sedini cases (see Table 2 and Table 3). This is because the maximum power
production occurs exactly at the direction in which all turbines are in full wake overlapping.
As in the previous simulation examples, the last downstream wind turbine is in greedy control con-
figuration, while the the other two are pitching.
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Figure 10. Three turbine case wind farm under pitch-based AWC and TI=0.06

On the other hand, the velocity field under yaw-based (Figure 9(c)) and CYP-based (Figure 9(d)) has
clearly lower wake effects with respect to the pitch-based AWC strategy. Nevertheless, it is not clear
withwhich of these twoAWC the velocity field has the best performance. In order to clarify it, consider
the power gain curves in Figure 11 and Figure 12. As expected, the CYP-based strategy has a bigger
increase, 20.42%, in power production gain than the yaw-based method, 20.35%; but there is not
much difference.
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Figure 11. Three turbine case wind farm under yaw-based AWC and TI=0.06
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Again, the last downstream turbine T3 is in greedy configuration, while the other two are yawing.
Notice that the yawing behavior of turbines T1 and T2 is almost synchronized; see Figure 9.
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Figure 12. Three turbine case wind farm under CYP-based AWC and TI=0.06

There is a power gain loss around wind direction 1800 in the bottom plot of Figure 11. Despite the
CYP-based scheme has a small power gain increase, the power gain loss of the yaw-based AWC is not
compensated by yawing and pitching simultaneously, the bottom plot of Figure 12. The main reason
is that, as it is shown in the middle plot in the same figure, only turbine T2 is pitching and only in
a small region of wind directions. Therefore, it follows that under yaw-based and CYP-based AWC
approaches, this wind farm produces almost the same power production increase, but CYP may still
be more beneficial in terms of loading.
3.5 Conclusions and future work

In this chapter a combined yaw and pitch based active wake control strategy has been evaluated on
realistic wind farm layouts using the steady-state wind farm model FLORIS.
The study shows that a CYP-based AWC strategy can take the benefits of the individual yaw-based
and pitch based AWCmethods. That is, the power gain increase of yaw-based AWC and the potential
load mitigation property of the pitch-based method. Even under the full wake overlapping case, the
CYP-based strategy showed that pitching can improve the power gain performance over the only
yaw-based.
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There is a big room for improvements and future research. First, the optimization algorithm used
here should be replaced by one that can overcome the problemof localminimum; thismay result, for
instance in the three turbine case, in extra pitching actions that increase the power gain. Secondly,
implement the CYP-based AWC strategy on the control oriented wind farm model FarmFlow. Third,
analyze the performance of the three control schemes considered in this study under variable wind
speed conditions on FLORIS. A further study consist in investigating the impact of loads of the CYP-
based AWC strategy.
Another possible research direction, it is the use of feedback distributed control methods for improv-
ing the optimization and adding group coordination properties to the wind farm.
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4 CLOSED-LOOP MODEL-BASED CONTROL USING A STEADY-STATE SUR-

ROGATE MODEL

This chapter is concerned with closed-loop model-based control for combined induction control and
wake steering using a steady-state surrogate model. Initial work on the framework is described in
Section 4.1, where two compromising assumptions are made – being that the wind direction is con-
stant and assumed to be measured. Then, in Section 4.2, a theoretical analysis is performed on the
observability of the ambient conditions. This approach is leveraged to decide which measurements
are necessary to estimate the ambient conditions. Finally, a robust closed-loop controller is synthe-
sized in Section 4.3, which is then tested under realistic, time-varying wind conditions. This further
stress tests the concept and matures it for practical usage.
4.1 Combined induction control and wake steering under constant inflow conditions

A concept often explored in the literature of wind farm control has been the static derating of up-
stream turbines in order to increase the power yield of the wind farm. This derating occurs by chang-
ing the turbine generator torque and/or the blade pitch angles. While often promising in simplified
simulation studies, this wind farm control concept has led to mixed results in high-fidelity simula-
tion [4] and scaled experiments [17] in terms of increasing the power production of the wind farm. A
more fitting goal for induction control is loadmitigation and electricity grid frequency regulation (grid
integration) [14], which are not further discussed in this chapter. In contrast to induction control, the
concept of wake redirection by purposeful misalignment of the rotor plane with the inflow has been
convincingly promising in the literature of wind farm control in terms of increasing the power yield
of wind farms. Wake redirection typically refers to a yaw misalignment, but a tilt misalignment is
theoretically possible too [6]. Numerous high-fidelity simulations [33], scaled experiments [17] and
full-scale experiments [29] have shown significant improvements in power yield compared to greedy
operation for yaw-based wake redirection control.
4.1.1 Methodology and results

In this section, a closed-loop model-based control framework is proposed. In this framework, a sim-
plified surrogate model of the wind farm is used twofold. The first use of the surrogate model is to
estimate the ambient conditions through a model inversion approach. Thus, we answer the ques-
tion “what ambient conditions produced the turbine signals that we currently measure in our wind
farm?”. Secondly, we use the surrogate model to optimize the control setpoints, such as to increase
the power yield of the wind farm. Thus, we answer the question “what turbine yaw angles lead to the
highest amount of energy extraction?”
The remainder of this section shows the corresponding publication for the American Control Confer-
ence (ACC), which took place in Philadelphia, Pennsylvania, U.S., on July 10-12, 2019. This paper was
accepted as a tutorial paper on the topic of wind farm control [24].

Copyright CL-Windcon Contract No. 727477 Page 25



A tutorial on the synthesis and validation of a closed-loop wind farm
controller using a steady-state surrogate model

Bart M Doekemeijer†, Paul A Fleming‡ and Jan-Willem van Wingerden†

Abstract— In wind farms, wake interaction leads to losses
in power capture and accelerated structural degradation when
compared to freestanding turbines. One method to reduce
wake losses is by misaligning the rotor with the incoming flow
using its yaw actuator, thereby laterally deflecting the wake
away from downstream turbines. However, this demands an
accurate and computationally tractable model of the wind
farm dynamics. This problem calls for a closed-loop solution.
This tutorial paper fills the scientific gap by demonstrating the
full closed-loop controller synthesis cycle using a steady-state
surrogate model. Furthermore, a novel, computationally
efficient and modular communication interface is presented
that enables researchers to straight-forwardly test their control
algorithms in large-eddy simulations. High-fidelity simulations
of a 9-turbine farm show a power production increase of up
to 11% using the proposed closed-loop controller compared to
traditional, greedy wind farm operation.

I. INTRODUCTION

As wind turbines extract energy from the air stream, a
slower, more turbulent flow trials behind their rotors, called
the “wake”. In wind farms, wake interaction leads to losses
in power capture and accelerated structural degradation when
compared to freestanding turbines (e.g., [1]). For example,
for the Lillgrund offshore wind farm, wake losses have been
estimated at 23% in the literature [2]. The area of wind farm
control aims to minimize these wake losses by intelligently
operating the turbines in the farm. A popular method to re-
duce wake losses in the literature is by misaligning the rotor
planes with the incoming flow using their yaw actuators,
thereby laterally deflecting the wake away from downstream
turbines [3]. This methodology is called “wake redirection
control” or “yaw control”. However, an accurate model of
the wind farm is a prerequisite to accurately determine the
optimal misalignment angles of the turbines [4].1

The concept of wake redirection control has been demon-
strated successfully in a number of situations in the literature.
Among others, [7], [8] demonstrated the concept in high-
fidelity simulation. Furthermore, [9], [10] demonstrated the

†Bart Doekemeijer and Jan-Willem van Wingerden are with the
Delft Center for Systems and Control (DCSC), Faculty of Materi-
als, Mechanical, and Maritime Engineering (3mE), Delft University of
Technology, The Netherlands b.m.doekemeijer@tudelft.nl,
j.w.vanwingerden@tudelft.nl

‡Paul Fleming is with the National Renewable Energy
Laboratory (NREL), Golden, Colorado, United States of America
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1There is research towards model-free methods for wind farm optimiza-
tion (e.g., [5], [6]), but the time delays involved in wake propagation pose
a real challenge to such methods. This is not further explored here, and the
interested reader is referred to Boersma et al. [4].

concept of wake redirection control in wind tunnel experi-
ments, and [11], [12] even tested the concept situationally in
full-scale field experiments. However, all these experiments
followed an open-loop approach, in which the information
flows as demonstrated in Fig. 1.

However, due to the lack of information and the com-
plicated dynamics at a range of spatial and temporal scales
inside the wind farm, accurate control cannot be achieved
without feedback [4]. More precisely, the surrogate models
used in the framework of Fig. 1 are only accurate in particular
situations, and do not suffice for all the conditions relevant
throughout the annual operation of the wind farm. Hence,
a closed-loop framework is preferred, in which information
flows as demonstrated in Fig. 2. In this closed-loop control
setting, measurements are used in a real-time optimization
framework to determine the next control policy. Here, a
simplified surrogate model of the wind farm is calibrated
in real-time using noisy measurements from wind farm.
These measurements may originate from, e.g., sensors inside
the wind turbine, measurement towers, or lidar systems
[13]. After calibration, the surrogate model should more
accurately capture the current dynamics inside the wind
farm. Then, a model-based optimization algorithm employs
this surrogate model to find the optimal control settings
for each turbine, where optimality is defined according to
the respective control objective. The frequency at which
the closed-loop controller operates depends on the surrogate
model, the frequency at which measurements are available,
the computational hardware, and the algorithms internal to
the wind farm controller (the adaptation and optimization
algorithm, respectively).

To synthesize a closed-loop controller, a number of key
steps are taken, as displayed in Fig. 3. These steps are, in
logical order:

1) Surrogate model selection: the closed-loop framework
of Fig. 2 requires an accurate yet computationally
tractable mathematical model of the dynamics inside
the wind farm that are relevant for control. This can
be either a steady-state model of the wind farm which
predicts the time-averaged effects of a control policy
on the power output of the wind farm (e.g., [7], [10],
[14], [15]), but can also be a dynamic model which
predicts the second-to-second flow and wind turbine
dynamics (e.g., [8], [16]–[19]). The surrogate model
for the closed-loop controller in this work is described
in Section II.
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Fig. 1. The open-loop control framework, in which a pretuned surrogate model is used to determine an optimal control policy, according to the assigned
control objective (e.g., power maximization, power reference signal tracking).
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Fig. 2. The closed-loop control framework, in which measurements are used in real-time to calibrate a surrogate model. This surrogate model is then
used to determine an optimal control policy, according to the assigned control objective (e.g., power maximization, power reference signal tracking).

Surrogate 
model 

selection

Surrogate model 
calibration through 

high-fidelity 
simulation

Surrogate model 
validation through 

high-fidelity 
simulation

Online 
estimation & 
optimization 
algor. design

Controller 
verification 

through high-
fidelity simulation

Surrogate model 
(calibration and) 
validation with 

field data

Controller 
validation through 
field experiments

Fig. 3. Flowchart for closed-loop controller synthesis

2) Surrogate model calibration through high-fidelity
simulation: typically, surrogate wind farm models
contain a number of tuning parameters which are
dependent on the wind turbines and wind farm
topology modeled. To push the accuracy of the
surrogate model, the tuning parameters are optimized
through high-fidelity simulation prior to controller
algorithm design. Typically, quantities of interest to
fit the surrogate model for are the turbine power
capture, as this often has an important role in the
optimization objective of the wind farm controller,
and possibly flow dynamics at particular locations,
as these may have an important contribution for
the real-time calibration algorithm in the closed-
loop controller (e.g., as in [20]). A priori (offline)

calibration with high-fidelity data is advantageous
compared to calibration with experimental data, in
the sense that measurement errors are not an issue.
Furthermore, the full three-dimensional flow field
is available at any point in time. In this work, the
high-fidelity simulation model will be described in
Section III, after which offline model calibration will
be discussed in Section IV.

3) Surrogate model validation through high-fidelity
simulation: Once the model has been calibrated, it’s
accuracy should be validated to ensure the model
parameters have not been over-fit for the calibration
dataset. If successful, the next step is model validation
with experimental data. Model validation through
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simulation will be the topic of Section IV.

4) Surrogate model (calibration and) validation with
experimental data: after offline model calibration, the
surrogate model should be validated, ideally with
field data of the wind farm for which the closed-loop
controller is synthesized. For example, Schreiber
and Bottasso [21] and Annoni et al. [22] have
demonstrated this validation procedure for simplified
steady-state surrogate models. This step is considered
to be out of the scope of this paper for the presented
case study.

5) Online estimation & optimization algorithm design:
Once the surrogate model is validated, the controller is
to be synthesized. As shown in Fig. 2, the closed-loop
controller consists of two components: an estimation
algorithm which adapts the surrogate model to the
current conditions inside the farm in real time, and
an optimization algorithm that determines the optimal
control policy of the wind turbines for the conditions
at hand.
Literature on online estimation for wind farm surro-
gate models is scarce. Fortunately, additional sensing
equipment in the wind farm such as lidar systems
are becoming increasingly popular in the literature
(e.g., [13], [23]). This additional information may be
used on the turbine level for load reduction, but can
additionally be used on the wind farm level for real-
time surrogate model calibration. However, currently,
the step of estimation has conveniently been ignored in
most of the literature on wind farm control (e.g., [8],
[24], [25]), yielding an open-loop control solution. In
some cases, a simplified state estimation algorithm has
been applied for dynamic surrogate models, such as a
linear Kalman filter (e.g., [17], [26]). More recently,
there have been positive developments in the field of
real-time model adaptation, using more sophisticated
estimation algorithms that attempt to balance accuracy
with computational efficiency (e.g., [27], [28]).
In terms of optimization, for steady-state surrogate
models, a gradient-based or nonlinear optimization
algorithm is typically employed to determine the op-
timal steady-state control settings for the wind farm
(e.g., [7], [29], [30]). For dynamic surrogate models,
typically predictive control methods are followed to
yield an optimal control policy, which typically is a
time-varying solution (e.g., [24], [31], [32]).
Model-based estimation and optimization will be the
topic of Section V.

6) Controller verification through high-fidelity simulation:
before deploying the controller in the field, it should
be tested in high-fidelity simulation to ensure
robustness and to provide an insight of the potential
gains. Another important factor to investigate is the
change in loads on the turbine structure due to the

new control policy. In simulation, identical inflows
can be simulated, allowing one-to-one comparisons
of the controller with the baseline situation. While
many controllers in the literature have been tested in
simulation, they were typically assessed in idealistic
conditions, using simplified models [4]. There are only
a handful of closed-loop control algorithms that were
tested in a high-fidelity wind farm simulation (e.g.,
[8], [33]–[35]). An important contribution of this work
is the facilitation of a communication infrastructure
that enables researchers to test their control algorithms
more easily in a high-fidelity environment. Controller
verification through simulation is the topic of
Section VI.

7) Controller validation through field experiments:
finally, the wind farm controller should be deployed
in the field. The literature on this topic has been very
limited (e.g., [11], [12]). Generally, it may be difficult
to reliably measure the gains of the closed-loop
control algorithm compared to greedy control, as
the ambient conditions vary continuously. Due to
measurement uncertainty, the need for additional
sensors and processing equipment, and the changing
atmospheric conditions, controller validation through
field experiments is significantly more complicated
than in simulation, yet very necessary. Controller
validation through field experiments is out of the
scope of this work.

Even though the flowchart is drawn linearly in Fig. 3,
one has to note that it is often necessary to go through
multiple iterations of simulation, algorithm development,
and experimental validation, before satisfactory wind farm
control performance has been realized.

Most of the literature on wind farm control has focused
on only one component of the closed-loop controller syn-
thesis for wind farms. Typically, this is either the surrogate
model or the optimization algorithm. Furthermore, these
solutions are typically only tested in a simplified simulation
environment, and therefore the usefulness of these control
solutions remains uncertain. To address this scientific gap in
the literature, the main contributions of this paper are:

• the explanation and demonstration of the full closed-
loop controller synthesis cycle for wind farms using a
steady-state surrogate model of the dominant wind farm
dynamics,

• the development of an open-source, open-access com-
munication interface that enables researchers to straight-
forwardly test their control algorithms (developed in
Python, MATLAB, or a similar language) with the high-
fidelity large-eddy simulator SOWFA [36],

• providing a benchmark/example simulation case in
which a closed-loop wind farm control algorithm relying
on a simplified surrogate model is tested in high-fidelity
simulation [37].
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The structure of the paper is as follows. First, a steady-
state surrogate model of the wind farm is outlined in
Section II. A high-fidelity simulation model used for
model calibration, validation, and controller verification
is discussed in Section III. Then, the surrogate model is
calibrated and validated through high-fidelity simulation in
Section IV. Further, a closed-loop controller is synthesized
using this surrogate model in Section V. Finally, controller
verification through high-fidelity simulation is the topic of
Section VI. The paper is concluded in Section VII.

II. SURROGATE MODEL

The surrogate model used in this work combines a single
wake model for wake redirection and turbine derating based
on [10] with a wake deficit summation model [38], a turbine-
induced turbulence model [39], and a turbulence summation
model [40] from the literature. The focus in this section is
on the single wake model, as it is the most insightful for the
remainder of this paper. This surrogate model is selected for
its strong theoretical origin, its performance when compared
to experimental data from wind tunnel testing [10] and
experimental data from the field [22], and for the fact that it
has fewer tuning parameters than some comparable models
(e.g., [7]). Note that this surrogate model is interchangeably
called the “FLO Redirection and Induction in Steady-state”
(FLORIS) model in this paper, and has also been published
in the public domain under the same name [22], [41].

In short, the near-wake zone is modeled as a linearly
converging cone with its base at the turbine rotor, and its
tip located at distance x0 downstream. Here, x0 is calculated
by

x0

D
=

cos(γ) ·
[
1+
√

1−CT
]

√
2 ·
(
α · Irotor +β ·

[
1−√1−CT

]) , (1)

with D the rotor diameter, γ the yaw misalignment angle of
the rotor with the incoming flow, CT the non-dimensional
thrust coefficient, Irotor the turbulence intensity at the rotor
of the turbine, and α and β tuning parameters. A schematic
overview of the wake model is given in Fig. 4.
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Fig. 4. A schematic drawing of the single wake model, taken and modified
from [10].

At the onset of the near wake and in the far wake region,
the wake deficit follows the shape of a two-dimensional

Gaussian distribution, according to
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where U∞ is the wind speed far upstream of the turbine,
σ is the standard deviation in the specified direction, and
(x,y,z) is the Eucledian space with its origin at the turbine
hub, x aligned with the wind direction and z being positive
upwards. The Gaussian-shaped wake is centralized around
the centerline. The centerline is displaced in y-direction from
the x-axis by distance δ f due to a yaw misalignment and the
rotor rotation, calculated as

δ f =δr(x)+ tan(θ)x0 +
θ
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·
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Here, θ is the initial deflection angle, calculated as

θ ≈ 0.3γ
cosγ

(
1−
√

1−CT cosγ
)
. (4)

Furthermore, C0 = 1−√1−CT , ky and kz are linear wake
expansion coefficients similar to that in Jensen [14], and Sσ
is defined as Sσ =

√
(σyσz)/(σy0σz0), with σy and σz the

standard deviations of the Gaussian in the y- and z-direction,
respectively. These are calculated as

σy = σy0 +(x− x0)ky, with σy0 =
D

2
√

2
cosγ, (5)

σz = σz0 +(x− x0)kz, with σz0 =
D

2
√

2
. (6)

The wake expansion coefficients are a function of Irotor, as

ky = kz = ka · Irotor + kb, (7)

with ka and kb tuning parameters. Further, δr is the wake de-
flection induced by the rotation of the blades, approximated
using a linear function following the idea of Gebraad et al.
[7], by δr = ad ·D+bd ·x, with ad and bd tuning parameters.

Finally, the time-averaged power capture of a turbine is
calculated by combining the effects of all wakes impinging
this turbine’s rotor following Katic [38] and actuator disk
theory. The interested reader is referred to related literature
[10], [22] for more information.

III. HIGH-FIDELITY MODEL

In this work, the Simulator fOr Wind Farm Applications
(SOWFA), a high-fidelity simulation model from the U.S.
National Renewable Energy Laboratory (NREL), is used
for model calibration, model validation and controller
verification [36], [42].
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A. SOWFA

SOWFA is a large-eddy simulation model that incorporates
a rotating actuator disk implementation of wind turbines,
and solves the three-dimensional, filtered, unsteady Navier-
Stokes equations over a finite temporal and spatial mesh,
accounting for Coriolis and geostrophic forcing terms.
Large-eddy simulation models such as SOWFA resolve
larger scale flow dynamics directly, and employ a subgrid-
scale model for smaller eddy dynamics. SOWFA has been
used on multiple occasions for surrogate model calibration
(e.g., [7], [19], [43]), model validation, and wind farm
controller verification (e.g., [28], [33], [34], [43]).

B. Wind farm controller interface

In order to test controllers in a closed-loop setting, mea-
surement data and control settings need to be passed between
SOWFA and an external wind farm controller periodically
throughout the simulation. As most wind farm control al-
gorithms from the literature are implemented in Python
or MATLAB, and SOWFA operates in C, coupling these
pieces of software is not straight-forward. For this reason,
an important contribution of this work is the development
of an interface that allows researchers to test their control
algorithms with SOWFA without making significant modifi-
cations to their code.

The open-source software zeroMQ [44] was implemented
in SOWFA as a message passing interface to an external
wind farm controller and published in the public domain
[42]. Using this interface, one can straight-forwardly expand
their wind farm controller implemented in a programming
language of choice (supporting zeroMQ) to receive mea-
surement data from SOWFA, and return control settings.
Note that SOWFA and the wind farm controller are run
in parallel, and can even operate on different computers,
platforms, and networks – as long as a (network-based)
connection can be made. Currently, the TCP protocol is used
for communication.

The order of operations in a typical wind farm simulation
using the ZeroMQ interface is shown in Fig. 5. In this
case, MATLAB is used as an example in which the wind
farm control algorithm is implemented. Note that SOWFA
and MATLAB are run in parallel, rather than in serial.
After initialization, each waits for the other to perform
its computations, and thus only one of the two is really
performing computations at any point in time. Hence, the
idea is to have SOWFA and MATLAB share the same
computational cores to minimize the time that cores spend
idling. Communication through ZeroMQ happens twice
each discrete timestep of the simulation – once to transmit
measurements to MATLAB, and once to receive control
settings from MATLAB.

MATLAB:
Receive 

measurements

SOWFA:
Send turbine 

measurements

MATLAB:
Determine control 

settings

SOWFA:
Idle...

SOWFA:
Receive control 

setpoints

MATLAB:
Send control 

setpoints

SOWFA:
Time propagation of 

flow solver

MATLAB:
Idle...

End of 
simulation?

No

Yes

End

End of 
simulation?

No

Yes

End

SOWFA:
Initialize the flow 

solver

MATLAB:
Initialize wind farm 

controller

Fig. 5. This figure shows a flowchart of the order of operations in a
SOWFA simulation which is coupled to a closed-loop wind farm controller
(in this case: implemented in MATLAB).

IV. MODEL CALIBRATION & VALIDATION
THROUGH HIGH-FIDELITY SIMULATION

The model presented in Section II has a number of tuning
parameters that may vary with, e.g., the wind farm topology
and wind turbine types. Specifically, some of the literature of
Section II is based on wind tunnel experiments, in which flow
behavior is known to deviate from the actual large-scale wind
farms. For this reason, the parameters α , β , ka, kb, ab and
bd are tuned to high-fidelity, true-scale wind farm simulation
data in this section, prior to control algorithm design.

We perform a set of single-turbine simulations in SOWFA
to calibrate the surrogate model with. This set contains:
• Two types of inflow: one set with uniform inflow and

one set with turbulent inflow,
– each consisting of a set of simulations with yaw

angles ranging from −30◦ to 30◦ with a collective
blade pitch angle of 0◦,
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– and another set of simulations with a turbine yaw
angle of 0◦ and the collective blade pitch angle
varying from 1◦ to 4◦.

This covers both wake deflection and turbine derating for
typical turbine operation. The NREL 5MW turbine is used
[45]. Using this data, the model is now calibrated offline as
follows.

A. Calibration methodology

1) A spatially and temporally averaged vertical inflow
profile is extracted from the high-fidelity dataset. The
same inflow profile is used in the surrogate model
through a linear spline interpolation. An example is
given in Fig. 6.
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Fig. 6. Inflow comparison. In gray are all vertical profiles along the spatial
domain, upon which a single mean profile is fit using spline interpolation.

2) The flow field from the high-fidelity simulation is time-
averaged over a 10-minute window to average local
fluctuations. This fits the scope of what the surrogate
model intends to reproduce.

3) This time-averaged flow field is sliced at 3D, 5D, 7D
and 10D downstream, and measurements are sampled
over a rectangular grid at each downstream location.
An example is shown in Fig. 7 for one of the simula-
tions with uniform inflow.

4) A cost function is set-up, where the root-mean-squared
error between the flow measurements from SOWFA
and that predicted by the surrogate model is minimized
for arguments Ψ =

[
α β ka kb ad bd

]
, as:

Ψopt = argmin
Ψ ∑

i

(
U i

SOWFA−UFLORIS(Ψ)
)
, (8)

where i covers the full set of single-turbine simulations.
The control settings and ambient conditions varying
with i are neglected in notation here.

An important remark is that, in a more elaborate study,
one would have to include the combined effect of turbine
derating and wake redirection. Furthermore, a wider range
of turbulent inflows should be considered, at various
turbulence intensities and various mean wind speeds. Also,
it is important to consider the interaction for multiple
turbine wakes. However, this is outside of the scope of this
work.

(ms  )-1

(ms  )-1

(ms  )-1

Fig. 7. Wake comparison at 5D downstream. The black dots in the top
subplot show the locations of the measurements that will be used to calibrate
the surrogate model with SOWFA.

B. Calibration results

The model described in Section II has been implemented
in MATLAB, and made available to the public [41]. A
constrained genetic algorithm optimization approach is used
to solve the problem of Eq. 8 in an efficient, parallelized
manner, taking approximately 20 CPU-hours. The optimized
parameters Ψopt are displayed in Table I. The lower and
upper bounds on the parameter optimization space are chosen
as to stay within the same order of magnitude as the nominal
values presented in the literature [10], in order to limit
overfitting and parameter divergence.

TABLE I
OPTIMAL PARAMETERS ΨOPT FOR THE SURROGATE MODEL AFTER

CALIBRATION USING HIGH-FIDELITY SIMULATION DATA

Variable Lower bound Upper bound Optimal value
α 5.80 ·10−1 9.28 3.16
β 3.85 ·10−2 6.16 ·10−1 3.28 ·10−1

ka 9.59 ·10−2 1.53 ·100 1.74 ·10−1

kb 9.25 ·10−4 1.48 ·10−2 9.69 ·10−4

ad −1.00 1.00 −1.34 ·10−3

bd −4.00 ·10−2 −2.50 ·10−3 −2.68 ·10−3

Inspecting Table I, it is seen that most of the optimized
values lay between their lower and upper bound. This is a
good sign, as the opposite situation may indicate overfitting
and parameter divergence.

C. Validation results

To ensure that the model calibration procedure was suc-
cessful, the calibrated model is compared with a high-fidelity
simulation dataset of a 9-turbine wind farm in which arbitrary
yaw angles are applied to the turbines. The model has not
been fit for wake interaction, and hence this is an interesting
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case to inspect. The yaw angles are derived from a Gaussian
distribution, yielding

~γ = [2.9◦, 32.1◦, 12.6◦, −20.3◦, 16.1◦,
−14.4◦, −1.9◦, −21.6◦, 29.4◦].

Note that the pitch angles are kept constant at 0◦ in this
validation case, since it is in unlikely that they will be ex-
ploited for wind-farm-wide power maximization in the to-be-
synthesized optimization algorithm [43]. The time-averaged
horizontal plane is shown in Fig. 8. Furthermore, the time-
averaged wake deficits at different distances downstream are
displayed in Fig. 9. From these figures, a good fit can be seen

Fig. 8. Validation of the surrogate model with SOWFA: time-averaged
flow field at turbine hub height. Units are ms−1.

in the far-wake regions and in the single-turbine wakes. As
more wakes interact, the fit gets worse, as the model has not
been calibrated for this situation. Furthermore, the calibrated
model parameters Ψopt have improved the model compared
to the nominal model parameters from the literature Ψ0,
especially for the near-wake and far-downstream region.

The power predicted from the surrogate model is com-
pared to the power from SOWFA in Fig. 10. One can see that
the trends are adequately captured in the surrogate model.
Though, it slightly underestimates the power capture in most
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Fig. 9. Validation of the surrogate model with SOWFA: wind speed at hub
height at different distances downstream
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Fig. 10. Validation of the surrogate model with SOWFA: time-averaged
power capture per turbine

situations. Furthermore, the calibrated parameters Ψopt show
improved performance compared to Ψ0.

In conclusion, the surrogate model can accurately capture
the wake and power of this 9-turbine wind farm. However,
it is still to be seen whether the surrogate model can capture
more difficult situations such as deep-wake effects and
partial overlap situations such as described in [46]. This
should be addressed in future work.

V. CLOSED-LOOP CONTROLLER SYNTHESIS

The turbine control settings inside the wind farm are
optimized using the surrogate model from Section II
in a closed-loop setting. The model was calibrated on
10-minute average data in Section IV. In the proposed
closed-loop controller, the control settings of the turbines
are optimized every 10 minutes. The controller consists
of two components: an estimator and an optimizer, each
described next.
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A. Estimation

In this work, online estimation is limited to the ambient
conditions: the freestream wind direction, turbulence inten-
sity and mean wind speed. A single-shot estimation of all
three ambient parameters using only turbine power mea-
surements would most likely result in parameter divergence
and overfitting. For example, in a two-turbine case, one can
almost always bring the cost function to zero by choosing a
certain (wrong) wind direction and wind speed.

To avoid overfitting, firstly the wind direction is assumed
to be estimated for each turbine individually following the
approach of [47]. Secondly, the wind speed and turbulence
intensity are collectively estimated on a farm-wide level by
minimizing a weighted root-mean-squared error of the mea-
sured and predicted turbine power signals of each turbine,
putting a higher weight on the upstream turbines, as

Ξopt = argmin
Ξ

Nt

∑
i

wi
(
Pi

SOWFA−Pi
FLORIS(Ξ)

)
. (9)

Here, Nt indicates the number of turbines, wi is a weighing
term, and Ξ = [I∞,U∞] is to be estimated.

B. Optimization

The wind direction is known to have a significant impact
on the optimal yaw angles inside the wind farm [30]. The
approach used to estimate the wind direction was derived
from [47]. In the corresponding paper, a standard deviation
in wind direction estimation of 6◦ was given for U∞ = 8 m/s.
Hence, a robust optimization approach is followed. In this
case, we use the approach from Rott et al. [30], in which
the yaw angles are optimized for a probability distribution of
wind directions, rather than one deterministic wind direction.
The optimization is formulated as follows,

~γopt = argmax
~γ

∫ π

−π
ρ(φ)

Nt

∑
i

Pi
FLORIS(γi), (10)

with ~γ =
[
γ1 γ2 · · · γNt

]
, Nt the number of turbines, and

ρ a probability distribution of variable φ , the wind direction.
Basically, the yaw angles are now optimal if they provide
consistent performance for a range of wind directions in
proximity of the mean wind direction. For a solution to
exist within a reasonable computational time, the probability
distribution is discretized at 5 points, as demonstrated in
Fig. 11. Thus, for one function evaluation, the surrogate
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0.2
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0.6

Fig. 11. Robust optimization

model is simulated five times, each with a different wind
direction. In the example case of Fig. 11, this would be
φ = −0.21 rad, φ = −0.10 rad, φ = 0 rad, φ = 0.10 rad,
and φ = 0.21 rad. The resulting farm-wide power capture
for each of these five simulations are summed, weighted
according to their respective probability. The objective is
to maximize this weighted sum. Note that in terms of
measurement uncertainty, the standard deviation of ρ goes
down with the square root of the number of individual
sensors. In this case, the number of individual sensors is
equal to Nt , as each turbine is assumed to provide a unique
measurement of (what is assumed to be) the same quantity.

VI. SIMULATION RESULTS

The 9-turbine wind farm from Fig. 8 is used to test the
closed-loop controller described in Section V. The turbines
are initialized at a greedy control setting, where γi = 0◦ ∀ i.
Then every 600 s, the controller determines the optimal yaw
angles, constrained with −25◦ ≤ γi ≤ 25◦ ∀ i to threshold
the increase in structural loads due to a yaw misalignment.2

A. Open-loop controller

In the first case, an open-loop (OL) controller is synthe-
sized where a single set of time-invariant ambient conditions
Ξ is assumed. Specifically, Ξ contains the freestream wind
direction φ , the turbulence intensity I∞ and the mean ambient
wind speed U∞, respectively. The true ambient conditions
are Ξtrue =

[
0.0◦ 6.0% 8.0 ms−1

]
. In the open-loop case,

we simulate the situation of a model mismatch by assuming
Ξ=

[
10.0◦ 1.0% 6.5 ms−1

]
. Additionally, in the OL con-

troller, the probability distribution ρ in Eq. 10 is assumed to
have a zero standard deviation. The optimal control settings
for the OL controller are displayed in Table II.

TABLE II
OPTIMAL CONTROL POLICY USING OPEN-LOOP CONTROL

Time [s] ~γopt,1:2[◦] ~γopt,3[◦] ~γopt,4[◦] ~γopt,5:6[◦] ~γopt,7:9[◦]
0 0.0 0.0 0.0 0.0 0.0
600 −9.6 −10.9 −12.0 −11.0 0.0
1200 −9.6 −10.9 −12.0 −11.0 0.0
1800 −9.6 −10.9 −12.0 −11.0 0.0

As this is a steady-state, open-loop controller, the optimal
yaw angles are time-invariant throughout the simulation.

B. Closed-loop controller

In the second case, two closed-loop (CL) controllers are
synthesized, in which the past 300 s of measurements are
time-averaged and used to estimate the ambient conditions Ξ.
The weights wi in Eq. 9 are set to be 3 for upstream turbines
w1,2,3 = 3, the weights are w4,5,6 = 2 for the first row of
downstream turbines, and w7,8,9 = 1 for the most downstream
turbines. Basically, it is assumed that the confidence is

2Note that pitch angles were also optimized by the controller, but were
found to be zero in all cases.
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highest with the unwaked turbines, and the model fit is
progressively worse with more wake interactions.

The two closed-loop controllers differ in their optimization
approach. The standard deviation of ρ in Eq. 10 is assumed
to be 0◦ for the deterministic CL controller, and 6√

9
= 2◦ for

the robust CL controller, as there are nine turbines providing
a unique measurement of (what is assumed to be) the same
quantity. The resulting control policy for the robust CL
controller is shown in Table III.

TABLE III
OPTIMAL CONTROL POLICY USING CLOSED-LOOP CONTROL AND A

ROBUST OPTIMIZATION METHODOLOGY

Time [s] Ξopt [◦, %, ms−1] ~γopt,1:3[◦] ~γopt,4:6[◦] ~γopt,7:9[◦]
0 N/A 0.0 0.0 0.0
600

[
2.3 6.0 8.16

]
−24.4 −23.3 0.0

1200
[
−3.7 7.6 8.15

]
19.6 18.3 0.0

1800
[

1.1 6.9 8.15
]

24.5 18.7 0.0

The optimal yaw angles provided by the robust CL
controller vary with time, due to the changing atmospheric
conditions Ξ. Note that there is some switching behavior
at t = 1200 s in the optimal yaw angles due to the change
in sign of the estimated wind direction. While the robust
optimization approach should account for this [30], it is
expected that the standard deviation for ρ in the optimization
was too low. This should be investigated in future work. The
time-averaged flow field in SOWFA under the closed-loop
control policy for t = 900 s to t = 1200 s is shown in Fig. 12.

Fig. 12. Time-averaged wind speed in ms−1 at the horizontal flow slice
at z = 90 m (hub-height) for t = 900 to t = 1200 s.

C. Comparison

The performance of the open-loop and closed-loop con-
trollers is shown in Table IV. In this table, ~γ det.

opt, CL and ~γ rob.
opt, CL

are the sets of optimal yaw angles obtained in closed-loop by
optimizing with a standard deviation for the ambient wind
direction ρ in Eq. 10 of 0◦ and 2◦, respectively. One can see
that both the OL and the CL controllers improve the farm-
wide power capture compared to a greedy control approach.
However, the CL controllers consistently outperform the OL
controller, with a situational wind-farm-wide power increase
of approximately 3% for the OL controller compared to
greedy wind farm operation, and between 7% and 11% for

TABLE IV
COMPARISON OF GREEDY CASE, OPEN-LOOP CONTROLLER CASE, AND

THE CLOSED-LOOP CONTROLLERS CASES

Time window γ =~γgreedy γ =~γ det.
opt, OL γ =~γ det.

opt, CL γ =~γ rob.
opt, CL

0-600 s 10.71 MW 10.71 MW 10.71 MW 10.71 MW
600-900 s 9.78 MW 9.71 MW 9.29 MW 9.40 MW
900-1200 s 9.49 MW 9.80 MW 10.44 MW 10.49 MW
1200-1500 s 9.54 MW 9.78 MW 10.50 MW 10.45 MW
1500-1800 s 9.64 MW 9.92 MW 10.32 MW 10.34 MW
0-2000 s 10.07 MW 10.21 MW 10.40 MW 10.45 MW

the CL controllers. This is due to the fact that the surrogate
model more accurately captures the current conditions inside
the farm for the CL controllers. The only loss compared to
greedy control is for t = 600−900 s, in which the effect of
yawing the upstream turbines has not yet resulted in a weaker
wake on the downstream rotors. Furthermore, the robust
optimization approach leads to slightly better performance
when compared to an approach in which the wind direction
is assumed to be deterministic.

The loss in power capture at t = 600−900 s can be more
explained using Fig. 13. In this figure, the power signals
are time-averaged with a moving average filter (non-causal
low-pass filter) with a time window of 50 s for both past
and future data, to provide more insight. As turbines 1
and 4 are purposely misaligned with the incoming flow at
600 s, they see a loss in power capture shortly after 600 s.
While this generates weaker wakes behind turbines 1 and
4, it takes some time for these weaker wakes to propagate
to turbines 4 and 7 downstream. Once that happens, a
significant gain can be seen (especially for turbine 7, around
800 s). Furthermore, a similar effect can be seen at 1200 s,
since wind turbines 1 and 4 are now yawed towards the
opposite direction. This leads to a temporary increase in
power capture, as the turbines pass γ = 0◦, but eventually
also to a decrease due to the stronger wakes generated
downstream. After the flow settles, there is again a constant
gain in overall power capture compared to the greedy
control case.

D. Discussion

While the closed-loop controllers presented in this
section yield a significant increase in wind-farm-wide power
production compared to traditional, greedy operation, an
important remark should be made. Namely, the controllers
have been simulated under idealistic ambient conditions.
While the large-eddy SOWFA simulation is of significantly
higher fidelity than the surrogate model, the inflow in
SOWFA still only has one mean wind direction, wind
speed, and turbulence intensity. As the control settings are
optimized at a frequency of every 10 minutes, this may or
may not be fast enough in a more realistic setting where
ambient conditions slowly vary with time. The actuation
frequency necessary for wind farm control remains an
open question in the research [4]. Because of this, the
fidelity necessary for surrogate models also remains an open
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Fig. 13. Timeseries of the power capture and turbine yaw angles for the
robust closed-loop wind farm simulation. The first and third subplot show
moving averages of the turbine resp. wind farm power capture, averaged by
a time window of 50 s in both the past and future data. The yaw angles
are updated according to the controller at a rate of 600 s, starting from the
traditional greedy control strategy at 0 s.

question, and a wide range of steady-state and dynamical
models is investigated in the literature. The study of
SCADA data, experimental testing and high-fidelity, large-
eddy simulations coupled with mesoscale models should
further provide guidance in answering these questions. This
is out of the scope of this work.

E. Wind farm controller interface

An important contribution of this work is the open-
source communication interface developed for the
verification of wind farm control algorithms in a high-
fidelity environment. For the simulations presented in this
section, the computational time required by the ZeroMQ
communication was found to be on the order of 1 ·10−3 s for
sending a single message (set of measurements or control
settings) in either direction. This is negligible compared to
the computational cost of SOWFA, which is in the order of
101 s per timestep for this parallelized 80-core case.

VII. CONCLUSIONS

This paper demonstrated the synthesis cycle of a closed-
loop wind farm controller using a steady-state surrogate
model. The surrogate model was first calibrated and
validated using high-fidelity simulations, after which the
controller was tested in a high-fidelity 9-turbine wind
farm simulation. To facilitate the testing of wind farm
controllers written in MATLAB or Python in a high-fidelity
environment, a communication interface was developed for
the high-fidelity simulator SOWFA. SOWFA simulations
with closed-loop wind farm control showed an increase in
wind farm power capture of 7% to 11% through yaw control.
Furthermore, the proposed communication architecture has
a negligible computational cost. While positive results
were shown in the simulations presented in this work, the
ambient conditions vary slowly in real wind farms. In theory,
this closed-loop framework should be able to deal with
such changes. This should be explored further in future work.
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SOFTWARE AVAILABILITY

All software presented in this work is open-source. The
high-fidelity simulation software SOWFA is developed
by NREL [42]. This software repository also includes
the communication interface that exchanges information
through ZeroMQ. The surrogate model presented in this
work is actively being developed by the Delft University of
Technology [41]. The community-driven ZeroMQ library
is also available in the public domain [44]. The wind
farm controller relying on the surrogate model, exchanging
information through the ZeroMQ interface with SOWFA,
has also been made available [37] as an example and a
benchmark case.
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4.1.2 A continued discussion

Looking at the paper presented in Section 4.1.1, it is noted that the optimization algorithm leads to
non-derated operation, even though the possibility of derating is incorporated into the optimization.
This means that, according to the FLORIS model, there is no benefit in turbine derating (induction
control) for power maximization. This agrees with previous findings in the literature [4, 17].
We can solidify this hypothesis by optimizing the induction settings of the turbines inside FLORIS for
an arbitrary wind farm. Take a generic 9-turbine wind farm of NREL 5MW turbines represented as
static actuator disks. A greedy control approach in which all induction factors are 1/3 is negligibly
worse than an optimized set of induction control settings. Specifically, optimization of this particular
case leads to all turbines besides themost downstream ones to be set at an induction factor of 0.305,
leading to a hypothesized power gain of 0.2% over greedy control for the whole wind farm. The wind
farm and flowfield are displayed in Fig. 13.
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Figure 13. Flow field [m/s] at turbine hub height for the generic 9-turbine wind farm
in which the axial induction factors of turbines 1-6 have been optimized for maxi-

mum power capture, found to be 0.305. This leads to an effective power gain of 0.2%
according to FLORIS in comparison to operation with an induction factor of 0.333.

Further, if the actuator disk models are replaced with Cp-Ct tables generated by a BEM code such
as OpenFAST, then no gain can be achieved at all, and the optimal pitch angles are equal to the fine
pitch angles [23].
Further, the controller does assign yaw misalignments to the turbines that shed a wake on other
downstream turbines. This wake redirection leads to a notable power increase of approximately
7% to 11%. This shows good agreement with what is seen in literature; namely, a significant power
yield can be obtained by purposely yawing a subset of the wind turbines away from the mean inflow
direction with 10− 25 degrees, leading to gains in power yield in the order of 5− 15%.
Further, note that the simulations presented in Section 4.1.1 are of the NREL 5MW turbine. Similar
situations focusing on wake redirection control only3 can be found in [22], which was also previously
discussed in deliverable D2.3 of the CL-Windcon project. The success of wake redirection control

3Though, results are most probably identical to combined induction-redirection control since FLORIS predicts no gains
in power capture through turbine derating

Copyright CL-Windcon Contract No. 727477 Page 38



D2.5 - Integrated wind farm controllers public

is closely related to the predicted losses of an upstream turbine due to yaw misalignment, and the
amount of wake deflection that can be achieved for a particularmisalignment angle. Note that, in this
work, the turbine power measurements are be used to estimate the ambient conditions. However,
these measurements do not always contain sufficient information to uniquely reconstruct the ambi-
ent conditions. A theoretical study on the observability of the ambient conditions will be presented
in the next section.
4.2 Assessing the observability of the ambient conditions: robustifying the estimation

of the ambient conditions in the closed-loop model-based controller

The previous section outlined a wind farm control solution in which the ambient conditions are esti-
mated continuously using amodel-based approach. In thismanner, three parameters are estimated,
namely the freestreamwind direction, the wind speed, and the turbulence intensity. However, these
parameters can not always be estimated. More specifically, the estimability of these parameters
highly depends on the measurements available, their uncertainty, and the current conditions inside
the wind farm. This section proposes a theoretical measure that gives a strong indicitation which
parameters can be estimated with the sensors available. In Section 4.2.1, a scientific publication is
outlined that presents the method and showcases it in simulation. Secondly, a brief discussion is
presented in Section 4.2.2.
4.2.1 Methodology and results

In Section 4.1, a control algorithm was outlined in which the ambient conditions were estimated fol-
lowing amodel inversion approach. In this article, both thewind speed and turbulence intensity were
estimated using the turbine power measurements, and the wind direction was estimated following
the method proposed by [11]. However, in reality, the inflow parameters can only be estimated in
certain scenarios. For example, if the wind was coming from a direction which leads to no wake in-
teraction, the turbine power measurements would be independent of the turbulence intensity, and
hence it would not be possible to estimate this parameter. The question of observability is immensely
important in robustifying wind farm control algorithms. This section outlines a theoretical approach
in establishing a measure of observability, which aids in deciding what parameters to estimate with
the sensors at hand.
The work presented in this section was submitted to the Wind Energy journal for review in July 2019.
The authors hope the article is available for the public in early-mid 2020.
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Summary
Wind farm control (WFC) algorithms rely on an estimate of the ambient wind speed, wind

direction and turbulence intensity in the determination of the optimal control setpoints. However,

the measurements available in a commercial wind farm do not always carry sufficient information

to estimate these atmospheric quantities. In this paper, a novel measure (“observability”) is intro-

duced that quantifies how well the ambient conditions can be estimated with the measurements

at hand through a model inversion approach. The usefulness of this measure is shown through

several case studies. These case studies show the strong need for wind direction measurements

for WFC. Further, generally, more wake interaction leads to a higher observability. Also, turbine

power measurements provide no additional information compared to local wind speed measu-

rements, implying that power measurements are superfluous. Irregular farm layouts result in a

higher observability due to the increase in unique wake interaction. The findings in this paper can

be used in WFC to predict which ambient quantities can (theoretically) be estimated. This will

ensure that the ambient condition estimation problem is well conditioned, thereby improving the

performance of WFC algorithms over the complete envelope of wind farm operation.

KEYWORDS:
closed-loop wind farm control, ambient condition estimation, observability, estimability, floris

1 INTRODUCTION

The European Wind Energy Association (EWEA) predicts the amount of installed wind energy to increase from 106 GW in 2012 to 735 GW in
2050, which at that point should provide for about 50% of the European Unions electricity demand. 1 The success of wind energy largely relies
on its financial competitiveness with other renewable and non-renewable sources. Control plays an invaluable role in this matter. In the past, the
focus of control research has been on wind turbine control. Recently, the interest has largely shifted towards wind farm control (WFC), in which
multiple turbines inside a wind farm are coordinated together to improve their combined energy yield. 2 WFC addresses the issue of wakes, which
are slower and more turbulent pockets of air that form behind a wind turbine as energy is extracted. Wake formation has led up to an estimated
23% loss in the annual energy yield of the Lillgrund offshore wind farm at the coast of Sweden compared to an idealized situation without wake
formation. 3 The underlying concept ofWFC is to influence the wake such that it has a smaller impact on downstream turbines. A popular approach
in the literature is yaw-based wake steering, in which the wake position is shifted laterally by purposely operating an upstream turbine at a yaw
misalignment. Recent studies have shown the potential of yaw-based wake steering for wind farm power maximization in high-fidelity simulation 4

and real-world experiments 5,6. These publications suggest an increase in the annual energy yield in the order of one percent, and situational
increases of up to twenty percent.

The amount of yaw misalignment that maximizes the energy yield is highly dependent on the wind direction, wind speed, and turbulence
intensity of the incoming wind field 3. As these atmospheric conditions constantly change, so do the optimal yaw angles. Typically, a simplified
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(“surrogate”) model of the flow and turbine dynamics is leveraged to calculate the optimal yaw angles. 14 However, due to the complicated flow
behavior at a range of temporal and spatial scales, no surrogate model exists that is accurate for all the different atmospheric conditions a wind
farm may encounter. For this reason, closed-loop control solutions are becoming increasingly popular in the literature 2. The underlying idea of this
closed-loop control framework is that the surrogate wind farm model is continuously adapted such that it accurately and consistently predicts the
wind farm dynamics.

The closed-loop WFC framework is shown in Figure 1. This framework consists of three components, namely 1) a surrogate wind farm model,
2) a model adaptation algorithm, and 3) a control setpoint optimization algorithm. Surrogate wind farm models can typically be separated into
static and dynamic models. These model types attempt to predict the minute-averaged and the second-to-second flow and turbine behavior,
respectively. The purpose of the model adaptation algorithm is to modify parameters inside the surrogate model such that it can accurately predict
the wake interactions inside the wind farm, which includes the freestream wind speed and wind direction. Finally, an optimization algorithm is
necessary to determine an optimal control policy such that a particular wind farm objective is achieved, e.g., maximization of the wind farm power
production. The focus in this article is on the model adaptation algorithm; the interested reader is referred to the survey by Boersma et al. 2 for
more information on surrogate models and optimization algorithms.

The body of literature on real-time model adaptation for WFC is scarce. Most WFC literature has focused on setpoint optimization and model
development. 2 This goes paired with the fact that most WFC algorithms in the literature have been tested under quasi-steady ambient conditions,
meaning that the mean wind speed, wind direction and turbulence intensity were time invariant. This holds for both numerical simulations 4 and
real-world scaled experiments 5,7. This limits the applicability of such algorithms, as the experiments do not sufficiently represent the real-world
fluctations in the atmosphere.

A handful of articles in the literature is concerned with the estimation of atmospheric conditions and model adaptation for WFC. Annoni et
al. 8 proposed a model-free algorithm to estimate the wind direction inside a wind farm using the wind vane measurements of different turbines
and obtaining a consensus on the most probable value. Doekemeijer et al. 9 proposed a method to estimate the freestream conditions by a model
inversion approach using the time-averaged turbine power measurements and a static surrogate model assuming the wind direction is known,
which is comparable to the idea coined by Gebraad et al. 4. Furthermore, Gebraad et al. 10 synthesized a Kalman filter for their dynamic surrogate
model, which uses the turbine power measurements to estimate the flow field inside the wind farm. The adapted surrogate model was able to
accurately predict the wind farm dynamics, though the wind direction was constant and assumed to be known. Similarly, Doekemeijer et al. 11 used
a dynamic surrogate model with an Ensemble Kalman filter to estimate the flow field and turbulence intensity using turbine power measurements.
High-fidelity simulations showed that the algorithm was able to successfully reconstruct the dynamic wind field for a 2-turbine and a 9-turbine
wind farm. However, also in this work, the wind direction was assumed known. Further, Shapiro et al. 12 synthesized and evaluated aWFC solution
assuming a constant wind direction. Besides the estimation of the ambient conditions, Bottasso and Schreiber 13 attempt to estimate several model
tuning parameters to improve the accuracy of the surrogate model.

External conditions

plant
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Measurement noise

+Control settings

Measurements

Model
adaptation

Model-based
optimization Calibrated

model

Control objective

controller

September 14, 2018 1 / 1

FIGURE 1 The closed-loop framework for model-based wind farm control. In this framework, measurements from each turbine in the wind farm
(e.g., turbine power signals, wind vane measurements) are used to adapt a simplified model of the wind farm to better represent the current wind
farm dynamics. Typically, the freestream wind speed and wind direction are among the estimated quantities. This adapted surrogate model is then
used to optimize the control settings of each turbine to increase the power capture of the wind farm. Finally, these setpoints are transmitted to
the real-world turbines and the cycle repeats itself.
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All aforementioned work, apart from that of Annoni et al. 8, is tested under quasi-steady ambient conditions in simulation, thereby significantly
limiting their applicability. In essence, these methods combine a set of measurements with some sort of surrogate or consensus model that relate
one measurement to another. These methods are fundamentally limited due to the fact that only a finite amount of information is measured. One
can easily think of situations in which the ambient conditions cannot be derived from the available measurements. Such a situation would be
considered “unobservable” or “unestimatible”. Thus, before one may attempt to estimate the ambient conditions, one should consider whether the
situation is observable in the first place. However, to the best of the authors’ knowledge, there is no literature on the observability for ambient
condition estimation. This paper aims to fill this scientific gap, and the contributions of this article are:

• Proposing a formal definition for a mathematical measure (henceforth referred to as “observability”) that quantifies how well the ambient
conditions (i.e., wind direction, wind speed, turbulence intensity) can be reconstructed from the measurements available in the wind farm.

• Comparing the effect of differentwind farm topologies and sensor configurations on the observability for a large range of ambient conditions
that a wind farm may encounter during operation.

• Performing theoretical case studies with wind farms with DTU 10MW wind turbines.

This article is organized as follows. The surrogate model used in this work is presented in Section 2. The issue of estimation and a novel
quantitative measure of observability is presented in Section 3. Simulation results are shown in Section 4, and the article is concluded in Section 5.

2 SURROGATE MODEL: FLORIS

The surrogatemodel used in this work is referred to as the “FLOwRedirection and Induction in Steady-state” (FLORIS) model 14. This model predicts
the time-averaged power capture of each turbine and the time-averaged three-dimensional flow field for a wind farm under a specified set of
inflow conditions. The timescale of FLORIS is on the order of minutes. A schematic overview of the types of inputs and outputs to the FLORIS
model is shown in Figure 2. Fundamentally, FLORIS combines several submodels from the literature. The main components of FLORIS used in this
article are described in the remainder of this section.

Firstly, FLORIS includes the single-turbine wake model from Bastankhah and Porté-Agel 15, which predicts the time-averaged three-dimensional
wind field behind a turbine. Secondly, the turbine-induced turbulence is calculated using an empirical function proposed by Crespo and Hernán-
dez 16. Thirdly, the wind field under multiple overlapping wakes is calculated through a sum-of-squared-deficits law as proposed by Katic et al. 17.
Fourthly, the power production of each turbine is calculated using the rotor-effective wind speed and the nondimensional power coefficient CP, as

Pi =
1

2
ρADU

3
i CP(Ui, γi), (1)

where ρ is the air density, AD is the rotor swept area, Ui is the spatially averaged inflow wind speed at turbine i, and γi is the yaw angle of the
turbine relative to the incoming wind. The nondimensional power and thrust coefficients, CP and CT, can be derived using actuator disk theory for
aligned inflow (γi = 0). Alternatively, the nondimensional power and thrust coefficients can be calculated using an aero-elastic turbine simulation
model for various wind speeds (and yaw misalignment angles) such as OpenFAST 18 or Bladed. A common expression modeling the effect of a yaw
misalignment on the turbine power production is 4

CP(Ui, γi) = CP(Ui, 0) · cosκ (γi) , (2)

where κ has a value of 1.4− 2.0, depending on the wind turbine.

FLORIS
“FLOw Redirection and 

Induction in Steady-state”

Ambient conditions
   - Farm-wide vertical wind speed profile
   - Farm-wide mean wind direction
   - Ambient turbulence intensity

Control settings
   - Yaw angle of each turbine
   - Thrust setting of each turbine

Wind farm properties
   - Wind farm topology
   - Turbine properties (rotor diameter,
     hub height, gen. efficiency, …)

Model definition
   - Submodel choices
   - Tuning parameters

Local turbine conditions
   - Rotor-avg. wind speed
   - Local turbulence intensity
   - Turbine power capture

Three-dimensional, 
time-averaged flow field

FLORIS inputsFLORIS inputs
FLORIS outputsFLORIS outputs

FIGURE 2 The flow of information for the surrogate model “FLORIS”. The left four blocks represent the various model inputs, and the right two
blocks represent the model outputs. Typically, the control settings and wind farm properties are known and are time invariant. However, the
ambient conditions are time variant, and the tuning parameters that provide the best results are uncertain.
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FIGURE 3 Simulation results for a wind farm with two DTU 10MW wind turbines using FLORIS. The figure shows a horizontal flowfield and a
cross-stream slice of the flow-field. The Gaussian nature of the wakes is clearly seen.

The results of an arbitrary wind farm simulation with two 10MW turbines 19 is shown in Figure 3. The computational cost for a single FLORIS run
is 10 ms to 1 s, depending on the number of turbines in the wind farm. FLORIS has shown a goodmatch with results from high-fidelity simulations 9,
wind tunnel experiments 20, and field tests 6,21. Furthermore, the variant presented in this article has fewer tuning parameters than a comparable
model proposed in 4. For a more detailed, mathematical description of the model, the reader is referred to its related literature. Note that the results
that will be presented in this article are not limited to FLORIS, and can straight-forwardly be reproduced with other static surrogate models.

3 METHODOLOGY: INTRODUCING AMEASURE OF OBSERVABILITY

The model adaptation solution of aWFC algorithm is not guaranteed to result in satisfactory performance. There has to be sufficient information in
thewind farmmeasurements to uniquely determine the ambient conditions. Hence, an observability analysis is essential before the implementation
of such a control algorithm. However, there is no clear definition on “observability” when it comes to (control methods relying on) a static wind
farm model. Therefore, in this section, a mathematical definition of “observability” is introduced for the control framework presented in Figure 1.

3.1 Cost function in estimation
Generally, a simplistic, heuristic approach is used to determine the prevailing ambient conditions inside the wind farm. However, the reliability of
such methods vary, the literature on them is scarce, and these methods are limited in their accuracy. Rather, in this work, a surrogate wind farm
model is leveraged in a sensor fusion approach for the estimation of the ambient conditions.

In this work, the freestreamwind speed, wind direction and turbulence intensity are estimated using the readily available measurements of each
turbine. For example, consider a cost function that minimizes the error with the time-averaged power measurements of each turbine, as

J1(φ̂, Û∞, Î∞) =
1

NT

NT∑

i=1

(
Pmeasured
i − P̂ FLORIS

i (φ̂, Û∞, Î∞)
)2
, (3)

with NT the number of turbines, and φ̂, Û∞ and Î∞ being the freestream wind direction, wind speed and turbulence intensity as evaluated in
FLORIS, respectively. Using this cost function for model adaptation, the idea is that values for φ̂, Û∞ and Î∞ are found such that the error between
the measured turbine power signals and what is predicted by FLORIS for these conditions is minimized. The cost function shown in Equation 3 was
used for model adaptation in Doekemeijer et al. 9 assuming φwas known a priori, which allowed the successful estimation of U∞ and I∞. However,
only using the turbine power measurements may lead to situations in which the true ambient conditions cannot be reconstructed accurately. For
example, consider the case in which all turbines inside the wind farm are operating in above-rated conditions. All turbines are then generating
their rated power, and one cannot distinguish different above-rated wind speeds from one another. To resolve this issue, one can include the wind
speed estimates from a local turbine wind speed estimator 22,23 in the cost function. This term is denoted by J2, given as

J2(φ̂, Û∞, Î∞) =
1

NT

NT∑

i=1

(
Umeasured
i − ÛFLORIS

i (φ̂, Û∞, Î∞)
)2
, (4)

where Umeasured
i is the measurement of the local wind speed estimator of turbine i, and ÛFLORIS

i is what FLORIS predicts the local wind speed to
be at turbine i for the hypothesized wind conditions φ̂, Û∞ and Î∞. Note that the inflow wind speed at a turbine in FLORIS, denoted by Ûi, is
the freestream-equivalent wind speed at that turbine under zero yaw misalignment. Thus, the effects of a yaw misalignment of turbine i are not
accounted for in this signal. However, in practice, a typical local turbine wind speed estimator provides a freestream-equivalent wind speed using
the turbine power signal under the assumption of zero yaw misalignment. To account for the situation in which a turbine is misaligned with the
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flow, one can model ÛFLORIS
i as

ÛFLORIS
i (γi) = ÛFLORIS,unyawed

i · 3
√

cosκ(γi), (5)

in order to match the signal definition from the local wind speed estimator, Umeasured
i . Finally, one can combine J1 and J2 into cost function J12, as

J12 = λP J1 + λUJ2, (6)

where λP and λU are weighing terms. Using the cost function defined in Equation 6, difficult situations may arise when trying to estimate φ, U∞ and
I∞. For example, if there is no wake interaction, one cannot estimate the freestream turbulence intensity, as the effects of I∞ have no correlation
with (i.e., impact on) the measured signals. Moreover, issues may arise concerning the estimation of φ, as demonstrated in Figure 4. In this situation,
φ̂ = 6.0◦ and φ̂ = −3.6◦ yield almost identical values for ÛFLORIS

1,2 and P̂FLORIS
1,2 , thereby making it impossible to distinguish these two situations

using the measurements available.
To address the latter issue, local wind direction estimates of each turbine are included in the cost function, e.g., using the filtered wind vane

measurements. 24 This term is modeled as J3, given by

J3(φ) =
1

NT

NT∑

i=1

(
φmeasured
i − φ̂

)2
, (7)

where φmeasured
i is the filtered wind vane measurement of turbine i, and φ̂ is the hypothesized wind direction in FLORIS. The complete cost function

J is now defined as

J(φ̂, Û∞, Î∞) =
1

NT

NT∑

i=1


λP

(
Pmeasured

i − P̂FLORIS
i (φ̂, Û∞, Î∞)

)2

︸ ︷︷ ︸
Contribution of local power measurements

+λU

(
Umeasured

i − ÛFLORIS
i (φ̂, Û∞, Î∞)

)2

︸ ︷︷ ︸
Contribution of local wind speed estimates

+ λφ

(
φmeasured

i − φ̂
)2

︸ ︷︷ ︸
Contr. of local wind direction (vane) estimates


 ,

(8)

with λφ a weighing term for the local wind direction estimates. This weighing term is to be chosen according to the relative measurement noise and
bias in the wind vane measurements, and could vary per turbine. The to-be-estimated quantities are φ, U∞ and I∞. Each of the three components
includes a squared term to quadratically penalize mismatches between the surrogate model and sensor measurements. The situation of Figure 4
becomes increasingly better conditioned as the contribution of the wind vane measurements increases, as visualized in Figure 5.

Thus, it is clear that local wind speedmeasurements (to deal with above-ratedwind speeds), wind directionmeasurements (to deal with situations
as exemplified in Figure 4), and wake interaction (to enable correlation between I∞ and the measurements) are required to promote observability
of the freestream conditions over the full range of operation. When multiple minima exist at a notable distance from the true solution (in the
example case of Figures 4 and 5 this would be ‖∆φ‖ � 0, with φ̂ = φ+∆φ), the ambient conditions cannot be reliably estimated, and the situation
becomes “unobservable”.1

However, while it is clear that particular situations are unobservable, a quantitative measure is still required to determine the degree of unob-
servability. For example, is the situation in Figure 5 with λφ = 1.0 “observable enough” to uniquely determine the ambient conditions? To answer
such questions, a quantitative measure of unobservability for static models is introduced in the next section.

FIGURE 4 The issue of symmetry exemplified on a two-turbine wind farm for the estimation of φ. The definitions are that φ = 0◦ when the air
moves from west to east (left to right), and is counter-clockwise positive. The colorbar depicts wind speed in m s−1. In this plot, it is seen that
φ̂ = 6 deg and φ̂ = −3.6 deg yield almost identical turbine power signals and local wind speeds, thus making them indistinguishable in the cost
function of Equation 6. This leads to an unobservable situation.

1Note that observability has a different notion in the field of control engineering for dynamical systems. In this article, an equivalent definition is defined
for the static problem outlined in this section.
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FIGURE 5 The issue of exclusively using power measurements in the cost function J (Equation 8), exemplified on the two-turbine case of Figure 4.
In all subplots, λP = 10−12 and λU = 0 (In this example case, λU = 0 as it carries the same information as the power signals do. This statement
will be proven in Section 4.1.1). In the left figure, λφ = 0, and thus exclusively power measurements are used. This leads to a critical point at
∆φ = −9.6◦ which has negligible cost, and thus this point cannot be distinguished from the actual point ∆φ = 0◦, with φ̂ = φ + ∆φ, leading to
unobservability. This refers back to the situation shown in Figure 4. By including wind vane measurements (λφ > 0), the cost function is better
conditioned to uniquely estimate φ. Note that λφ should be chosen in accordance with the vane’s measurement reliability.

3.2 A quantitative measure for unobservability
With the cost function defined, a quantitative measure on the degree of observability of a particular situation is defined. With “situation”, we imply
a particular wind farm layout, the true ambient conditions, and a specific choice of the regularization terms λP, λU and λφ. The main contribution
of this paper is the introduction of such a mathematical notion for observability. The observability of a particular situation O is defined as

O = min (M) , (9)

whereM(φ̂, Û∞, Î∞) =





∞ if‖∆φ‖ < bφ AND ‖∆U∞‖ < bu AND ‖∆I∞‖ < bI,

J(φ̂, Û∞, Î∞)

kφ(∆φ)2 + kU(∆U∞)2 + kI(∆I∞)2
otherwise,

(10)

with J as defined in Equation 8, kφ, kU and kI denoting normalization terms, and bφ, bU and bφ being thresholds. Further, ∆φ = φ − φ̂, ∆U∞ =

U∞ − Û∞, and ∆I∞ = I∞ − Î∞ denote the difference between the true and hypothesized ambient conditions, respectively. In the remainder of
this section, the working principle will be explained.

The functionM is defined such that critical points (low cost J, far away from the true solution) have a low value (less observable – hard to tell
apart from the true solution), while situations in which the cost J is high yields a high value (more observable – easier to distinguish from the true
solution). Furthermore, the threshold terms are present to ensure that any value estimated close enough to the true optimum does not “endanger”
the observability. A more elaborate discussion on these thresholds can be found in Appendix A.

Figure 6 demonstrates how the observabilityO is calculated for the example situation discussed in Section 3.1. The functionM is derived from
the cost function J following Equation 10. The cost function has two minima: one at ∆φ = −9.6◦ and one at ∆φ = 0◦, indicating that there are
two hypothetical wind directions that produce near-identical turbine power signals. This leads to a low observability.

Note that themeasured quantities in J are taken as the values from the surrogatemodel (FLORIS)with the true ambient conditions, thus assuming
a perfect model of the system. In reality, this will not hold and the work herein presents an idealized case (theoretical upper bound) of observability.

Finally, with a measure for observability defined, we can determine and analyze the observability of a particular wind farm for a certain wind
direction, wind speed and turbulence intensity. The process is as follows.

1. Firstly, measurement values are generated by evaluating FLORIS for the true ambient conditions. For example, continuing the example
2-turbine wind farm of Section 3.1, the observability for this wind farm is investigated at a true freestream wind speed of 7.0 ms−1, a
freestream wind direction of 6◦, and a turbulence intensity of 6.5%. Referring back to Figure 4, our measurements would be:

Pmeasured = PFLORIS(φ = 6◦,U∞ = 7.0ms−1, I∞ = 0.065) =
[
2.47 · 106, 1.01 · 106

]
, (11)

Umeasured = UFLORIS(φ = 6◦,U∞ = 7.0ms−1, I∞ = 0.065) =
[
7.0, 5.5

]
, (12)

φmeasured =
[
6.0, 6.0

]
(13)

The measurement vectors contain two entries, for turbine 1 and 2, respectively. In this simulation, the turbines are assumed to be aligned
with the inflow wind direction; γ1,2 = 0.
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FIGURE 6 A visualization of how the degree of observabilityO is calculated. This is a continuation of the example shown in Figures 4 and 5. Firstly,
the cost function J (left plot) is converted to a measureM (right plot) which penalizes a low cost far away from the true solution (the true solution
being ∆φ = 0). Secondly, the degree of observability O is the minimum value ofM. In this example, O is small due to J ≈ 0 at ∆φ = −9.6◦

(referring back to φ̂ = 6◦ and φ̂ = −3.6◦), and the situation is thus poorly observable. This agrees with the qualitative discussion from Section 3.1.

2. Secondly, with this set of measurements, the cost function J of Equation 8 is calculated for a range of hypothetical (tested) ambient con-
ditions. For this example, the model adaptation algorithm is limited to the estimation of U∞ and φ. The (two-dimensional) cost function is
evaluated over the following ranges:

∆φ =
[
−20.0 −19.2 −18.4 . . . 19.2 20.0

]
, with φ = 6◦ + ∆φ, (14)

∆U∞ =
[
−1.50 −1.25 −1.0 . . . 1.25 1.50

]
, with U∞ = 7.0 ms−1 + ∆U∞, (15)

∆I∞ =
[
0.0
]
, with I∞ = 0.065 + ∆I∞. (16)

If I∞ is additionally to be estimated, the (three-dimensional) cost function is also evaluated over the following range for ∆I∞:

∆I∞ =
[
−0.06 −0.03 0.0 0.03 0.06

]
, with I∞ = 0.065 + ∆I∞. (17)

Furthermore, the turbine yaw angles are fixed in the inertial frame and assumed to be known a priori in the cost function evaluations. Thus,
if the cost function is evaluated for ∆φ = 10◦, then γ̂1,2 = −10◦.

3. A two-dimensional (for ∆I∞ = 0) or three-dimensional (for ∆I∞ =
[
−0.06 . . . 0.06

]
) cost matrix is obtained following Equation 8, from

whichM is calculated following Equation 10. The degree of observability O is the minimum value ofM, being a positive real number.

The degree of observability O can be calculated for a range of true wind directions following the process described above, and displayed in a
single picture. The results of such an observability analysis assuming only power measurements are available (λP = 1, λU = 0 and λφ = 0) are
shown in Figure 7 for a 6-turbine wind farm. Note that λU and λφ are zero to provide insight into the results. In a practical wind farm control
implementation, one would opt for λU > 0 and λφ > 0, if these measurements are available.

Each of the two radial plots shown in Figure 7 represents the degrees of observability for 61 different wind directions. There is one degree of
observability defined for each true wind direction, plotted as a particular color across the polar axis. This thus indicates the estimability of φ and
U∞ for this true wind direction. For each of the 61 true wind directions, a two-dimensional cost functionM was calculated over the variables
∆φ = [−20,−19.2,−18.4, ...20.0] deg and ∆U∞ = [−1.50,−1.25,−1.00, ...1.50] ms−1. Then, O was taken to be the lowest value ofM, being
the degree of observability for this true wind direction, true wind speed, true turbulence intensity, wind farm layout, and with φ and U∞ being the
to-be-estimated parameters. We refer to this as the degree of observability for this particular “situation”.

Figure 7 clearly shows that the φ and U∞ can only be estimated for a narrow range of true wind directions when only power measurements are
available. This makes sense, since there is only wake interaction for a small range of wind directions. Without wake interaction, one cannot distin-
guish, for example, between the case where all turbines operate under a yaw misalignment and a higher inflow wind speed, from the case where
all turbines operate without a yaw misalignment and a lower inflow wind speed. Furthermore, an interesting difference between the observability
plot for a true wind speed of 6.5 ms−1 and 9.0 ms−1 is the degree of observability at the true wind directions of 90◦ and 270◦. This is due to the
fact that the downstream turbines operate below cut-in wind speed for the 6.5 ms−1 case at these wind directions due to the close spacing and
the wake effects. As these downstream turbines do not generate any power, their signals hold little information. For the 9.0 ms−1 case, all turbines
operate above cut-in wind speed, and thus these power signals contain more information about the flow.

The methodology presented in this section becomes more interesting when considering more complicated farm layouts, various combinations
of wind vane and wind speed measurements, and the inclusion of turbulence intensity estimation. This is the focus of the next section.
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Wind farm layout

FIGURE 7 Observability plots for the 6-turbine wind farm over a range of true wind directions (from 0 to 360 deg, plotted in 61 discrete points
along the polar axis), and two true wind speeds (6.5 ms−1 and 9.0 ms−1). The true turbulence intensity is assumed to be known in the estimation
problem, thus J(φ,U∞, I∞) = J(φ,U∞) and ∆I∞ = 0, where the estimability of φ and U∞ is assessed. Thus for each of the 61× 2 situations (a
situation is defined as a particular true wind direction andwind speed for this 6-turbine layout), the steps described earlier this section are followed.
The results are normalized to a scale of 0 to 1, with 0 being unobservable, and 1 being to the best observable situation.

4 A COMPREHENSIVE OBSERVABILITY ANALYSIS FOR 3WIND FARM LAYOUTS

The observability of the ambient conditions is investigated in this section for three different wind farm layouts, namely, two symmetrical wind farms
and one asymmetrical wind farm. The layouts are shown in Figure 8. The asymmetrical 8-turbine wind farm is an interesting configuration, as there
is more unique wake interaction situations in this layout. This reduces the issues with symmetry previously demonstrated in Figure 4 compared to
symmetrical wind farm layouts.

For each topology, the observability is calculated for 61 × 4 × 4 = 976 situations, namely for 61 wind directions φ = [0, 6, 12, . . . , 354] deg,
4 levels of turbulence intensity I∞ = [0.065, 0.095, 0.125, 0.155], and 4 wind speeds U∞ = [6.5, 9.0, 11.4, 14.5] ms−1, of which the latter wind
speed is above rated. Thus, for each of these 976 conditions, a multidimensional cost function is set-up and the most critical situation is determined
following Equation 10, upon which the observability for this situation is calculated using Equation 9. The parameters therein are shown in Table A1.

This section is separated in two parts. In Section 4.1, the observability of the various situations is assessed under the assumption that the
freestream turbulence intensity is known a priori. This simplifies the estimation problem and requires less information to be extracted from the
measurements at hand. However, neglecting the estimation of I∞ would severely impact the accuracy of the surrogate model in a practical wind
farm control algorithm. Hence, the observability with the inclusion of I∞ is presented in Section 4.2.

FIGURE 8 The three wind farm layouts used in a comprehensive observability analysis to demonstrate the working principles of the algorithm
presented in Section 3. The turbines are DTU 10MW turbines 19 with a rotor diameter D of 178.3 m and a hub-height of 119 m.
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4.1 Estimating φ and U∞ under perfect knowledge of I∞
First, the observability of various situations under the assumption that the turbulence intensity is known, Î∞ = I∞, is looked into. The range over
which each particular cost function is calculated is ∆φ = [−20,−19.2,−18.4, ...20.0] deg and ∆U∞ = [−1.50,−1.25,−1.00, ...1.50] ms−1. The
discretization of these parameters were tuned for convergence; such that the solutions no longer notably change at a higher precision. The range
of these parameters are chosen to resemble the typical prior knowledge one has about the true ambient conditions in such an estimation problem.

4.1.1 Redundancy in the cost function: power and wind speed estimates
One important notion in the cost function shown in Equation 8 is that the local wind speed estimates and the turbine power signals carry duplicate
information. Specifically, as the local wind speed estimators rely on the turbine power signal, the turbine power measurements theoretically add
no information to the cost function that is not already included in the wind speed estimator signals. To validate this, an observability analysis is
performed for the 6-turbine wind farm under λφ = 0 and various values for λP and λU. The results are shown in Figure 9.

From this figure, one can immediately see that situations in which all turbines are in above-rated operation are unobservable when λU = 0

(top-right subplot). This subplot shows some observability when the turbulence intensity is low and the wake interactions are deep, such that one
or multiple downstream turbines are operating below rated conditions. Furthermore, turbine power measurements do not add anything to the
observability compared to the wind speed estimates. Note that the observability plots are not identical for below-rated conditions as power is
cubically related to the wind speed, Pi ∝ U3

i , and thus the observability is spread slightly differently within the radial plots. Though, the trends are
identical. Hence, in the remainder of this work, λP = 0.

FIGURE 9 The observability for a range of wind speeds, wind directions and turbulence intensities under the assumption that I∞ is known, with
λφ = 0. The observability in each radial plot is normalized with respect to its highest value. The percentage on the bottom-right corner of each
radial plot indicates towhat degree the local wind speedmeasurements contribute to the observability. It can be seen that the powermeasurements
provide no additional information compared to wind speed estimates, and no information at all above rated wind speeds (top-right subplot).
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4.1.2 Using exclusively wind speed estimator measurements (λP = 0, λU = 1, λφ = 0)
Here, the situation with solely wind speed measurements available is investigated; λP = λφ = 0 and λU = 1. This is comparable to the estimation
framework applied in previous work 9, in which wind vane measurements were not assumed to be available. This is a particularly difficult problem,
as previous results from Section 3 suggest. In the remainder of this section, all three wind farm layouts will be addressed. The observability roses
are shown in Figure 10.

A number of observations can be made from Figure 10. Firstly, for the two-turbine wind farm, it is clear that the wind direction and wind speed
can only be estimated accurately for a narrow range of wind directions – specifically, in which there is sufficient wake interaction. Theoretically, the
U∞ can always be reconstructed from the wind speed estimate of the upstream turbine, and the upstream turbine can be distinguished if there
is wake interaction: it is the turbine with the highest power signal. The wind direction can then be estimated by looking at the quantity of wake
losses at the downstream turbine. However, this may lead to situations in which two hypothesized wind directions lead to a near-identical inflow
wind speed Ui, as was seen previously in Figure 4.

Secondly, for the six-turbine wind farm, it can be seen that this topology has more wake interaction than the two-turbine wind farm, and thus
has an increased observability for many situations. However, there are still situations with little to no wake interaction which are unobservable.
Note that the radial plots for both the two-turbine wind farm and the six-turbine wind farm are radially symmetrical, as the topologies are also
radially symmetrical.

Thirdly, for the eight-turbine wind farm, one can directly see that observability greatly increases due to many more unique wake interaction
between turbines. With all topologies, generally, it is noted that a higher atmospheric turbulence leads to a lower observability. Specifically, the
turbulence intensity reduces the wake interaction with downstream turbines. The results from Figure 10 show that φ and U∞ can only be recon-
structed for particular situations, and thus care has to be taken in such estimation algorithms and related wind farm control algorithms. The next
section shows the estimability of φ and U∞ with the inclusion of wind vane measurements.

FIGURE 10 The observability for a range of wind speeds, wind directions, and wind farm layouts under the assumption that I∞ is known, with
λP = λφ = 0. The observability in each radial plot is normalized with respect to its highest value. The percentage on the bottom-right corner of
each radial plot indicates to what degree the local wind speed measurements contribute to the observability, which in this situation is 100%.
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4.1.3 Using local wind speed and wind direction estimates (λP = 0, λU = 1, λφ = 10)
By including local estimates of the wind direction, λφ > 0, one can attain observability for all situations, as shown in Figure 11. Now, one assumes
both wind speed measurements and wind vane measurements to be available.

It is clear to see that all the necessary information is contained in the measurements available for the estimation of U∞ and φ: all situations
appear observable. Observability is guaranteed due to the availability of local wind speed and wind direction measurements, which are quantities
directly derived from the ambient wind speed, ambient wind direction, and the wake interactions. Note that there are some variations within the
radial circle, which are both due to physical effects such as more or less wake interaction, and also due to fact that the search space of the cost
function (∆φ, ∆U∞, ∆I∞) is discretized at a finite resolution.

The tools presented in this work may prove useful to find a balanced trade-off in the cost function between the contributions from various
measurement sources. However, even with an accurate estimation of φ and U∞, significant model discrepancies may remain. The freestream
turbulence intensity I∞ has a relatively large impact on the optimal turbine setpoints for wake steering, as it has a direct relationship to the degree
of wake recovery. Hence, the estimation of I∞ is a necessity in reliable wind farm control algorithms. In the next section, the estimation of I∞ is
incorporated into the observability analysis.

4.2 The full estimation problem: estimating φ, U∞, and I∞

While observability for all situations was shown in Section 4.1.3, a compromising assumption was made that the freestream turbulence intensity
I∞ was known. In reality, this is not a realistic assumption, and I∞ must be estimated together with U∞ and φ. The observability when estimating
φ, U∞ and I∞ is shown in Figure 12, where ∆I∞ = [−0.06, − 0.03, 0.0, 0.03, 0.06].

FIGURE 11 The observability for a range of wind speeds, wind directions, and wind farm layouts under the assumption that I∞ is known, with
λφ = 5 · 106 and λU = 0. The observability in each radial plot is normalized with respect to its highest value. The percentage on the bottom-right
corner of each radial plot indicates to what degree the local wind speed measurements contribute to the observability, which provides an idea to
the robustness of the solution.
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Several observations can be made. Firstly, one can directly see that the observability significantly reduces for a large range of conditions com-
pared to only the estimation of φ and U∞. For the two-turbine case, observability only remains for the narrow window of wind directions in which
there is wake interaction. This can be explained by the fact that the measurements provide direct information on φ and U∞, while the estimation
of I∞ is enabled through inversion of the surrogate model and the usage of the local wind speed measurement at the downstream turbine. This
only applies when wake interaction is present.

Secondly, observability is reduced in the 6-turbine case compared to Figure 11, yet observability remains more widespread than the two-turbine
case. More wake interaction and multiple-wake interaction leads to the fact that the turbine power signals are more sensitive to the freestream
turbulence, and thus yield a higher observability than the two-turbine case. Additionally, while a higher turbulence intensity leads to additional
wake recovery, it also leads to wider wakes which can impact a downstream turbine where it would not for lower turbulence intensities. These
two effects have an opposite effect on the observability, and hence observability does not uniformly decrease with an increase in the freestream
turbulence intensity.

Thirdly, the 8-turbine wind farm has the most observable situations from the three topologies. Due to the many unique wake interactions, the
solutions become relatively sensitive to the freestream turbulence intensity, and the ambient conditions can be estimated for most conditions.
Though, also in this wind farm one can find several situations in which the freestream conditions cannot uniquely be reconstructed from the
measurements available.

Finally, recall that these results present an idealized case, in which there is no measurement noise, and the surrogate model is used to generate
the measurements, implying that the surrogate model perfectly represents reality. None of these assumptions are valid in practice, and thus the
observability roses presented in this section will further diminish. Though, the results presented in this section are an essential step towards the
synthesis of an algorithm that estimates the ambient conditions in a robust manner. The observability roses from Figure 12 provide a theoretical
upper limit on the relative estimatibility of the ambient conditions φ, U∞ and I∞ from the measurements available. This can provide guidance in

FIGURE 12 The observability for a range of wind speeds, wind directions, and wind farm layouts with λU = 1 and λφ = 10. The observability in
each radial plot is normalized with respect to its highest value. The percentage on the bottom-right corner of each radial plot indicates to what
degree the local wind speed measurements contribute to the observability, which provides an idea to the robustness of the solution.
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wind farm control algorithms onwhen to estimate certain parameters. Sinceφ andU∞ are always estimable according to Figure 11, the observability
analysis presented in this section can be used to determine whether to estimate I∞ in addition to U∞ and φ. If the situation is “observable enough”
(which is to be selected experimentally), the measurements should contain sufficient information to reliably estimate I∞. If not, one can assume
I∞ to be equal to its past value (since the turbulence intensity also does not change very rapidly in the field), and exclusively estimate φ and U∞.
This approach is currently being explored and will be published in future work.

5 CONCLUSIONS

Over the last years, the scientific community surrounding wind farm control has shown an increasing amount of interest towards the real-time
estimation of the ambient conditions inside a wind farm. This ambient flow information is essential to the optimization of the turbine yaw angles
for wake steering, which is currently the most popular methodology of wind farm control for power maximization. The degree of reconstructability
of the ambient conditions highly depends on the meaurements available and the wind farm layout. For many situations, it is clear to see that the
ambient conditions cannot be estimated. However, no quantitativemeasure exists to represent the degree of estimability of the ambient conditions.
This paper addresses this scientific gap.

The main contribution of this paper is the introduction of a novel, mathematical definition for the observability of the ambient conditions. This
measure describes how well the true ambient conditions can be distinguished from hypothesized ambient conditions through a model inversion
approach for a particular set of measurements. This measure of “observability” is modular and can easily be extended with other measurement
sources or other surrogate models.

In several case studies, we show the usefulness of the proposed measure. Moreover, the cases show the strong need for wind direction infor-
mation to be included in the estimation algorithm. Generally, situations in which there is sufficient wake interaction are observable, while situations
with little to no wake interactions are unobservable. Furthermore, local turbine power measurements provide no additional information compared
to local wind speed estimates, implying that power measurements can be omitted from the cost function. Also, more complicated, unstructured
wind farm layouts generally result in a higher observability as there are more unique wake interactions between turbines.

In general, even with local wind speed andwind direction information, one still cannot reconstruct the full set of ambient conditions (wind speed,
wind direction and turbulence intensity) for all conditions that a particular wind farmmay encounter. Thus, before one may attempt to estimate the
ambient conditions, one should consider whether the situation is observable in the first place. Using this information, one may condition their wind
farm control algorithm to situations that are sufficiently observable. This will significantly improve the reliability of wind farm control algorithms
and thereby hopefully the willingness to adopt such algorithms by the industry.
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APPENDIX

A ADDRESSING IRREGULAR BEHAVIOR, NUMERICAL ISSUES, AND SINGULARITIES IN THE CALCULATION OF
THE DEGREE OF OBSERVABILITY

Equation 10 provides a clear measure for the degree of observability of a particular situation. With this formulation, evaluated ambient conditions
far away from the true ambient conditions (e.g., ‖∆φ‖ � 0) that yield a low estimation error J are penalized heavily. Namely, the nominator is
small and the denominator is large, leading to a low value ofO. In such a situation, it is unclear what the true ambient conditions are based on the
measurements available. These situations result in a low degree of observability. Alternatively, situations with a high cost far away from the true
ambient conditions result in a high degree of observability.

However, by simply dividing the cost function J over the distance between the evaluated and true ambient conditions leads to undesired
behaviour near the true ambient conditions (e.g., ∆φ ≈ 0). For example, a singularity arises when the evaluated ambient conditions φ̂, Û∞ and Î∞

are exactly the true ambient conditions φ, U∞ and I∞, respectively. Namely, then

M(φ,U∞, I∞) =
0

0
= undefined.

Similarly, when the evaluated conditions are very close to the true conditions, it becomes difficult to envision what the function ofM will look
like. For example, if J = 0 at ∆φ̂ = 0.2◦, then the situation would turn out to be unobservable. This is because one cannot distinguish the true
ambient condition (φ = 0◦) from a different evaluated condition (φ̂ = 0.2◦). Clearly, this should not yield an unobservable situation, and a situation
where J is very low “close enough” to the true conditions should not negatively impact the observability of the situation. To address this issue, a
“deadzone” is introduced forM in proximity of the true ambient conditions. This deadzone enforces observability when the evaluated ambient
conditions are “close enough” to the true ambient conditions. This can be seen as the upper formula in Equation 10, in whichM = ∞ within
the deadzone region. The effect of a deadzone is visualized in Figure A1. This deadzone resolves the issues related to singularities and numerical
sensitivities.

FIGURE A1 This figure depicts the issue when ∆φ ≈ 0 for the calculation ofM using Equation 10. The cost function shown here refers back
to the 2-turbine wind farm previously discussed in Section 3.1 with λφ = λU = 0). In the top-left figure, J, the mean-squared-error in turbine
power signals, is plotted as a function of the hypothesized wind direction. Estimating the observability following Eq. 9 leads to a singularity point
at ∆φ = 0, while clearly J = 0 at the origin (true solution) should not lead to unobservability. This is corrected for by using a deadzone in proximity
of ∆φ = 0, as by Eq. 10.
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TABLE A1 Relevant cost function parameters (left: normalization terms, right: deadzone threshold) for Eq. 9

kφ
1

40
deg−1

kU
1
3
m−1s

kI
1

0.12

bφ 4 deg
bU 0.25 ms−1

bI 0.03
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4.2.2 A continued discussion

When reflecting on the results presented in Section 4.2.1, it is clear to see that the observability of
the ambient conditions strongly depend on not only the measurements available, but also on the
actual ambient conditions, such as the wind direction. This is a chicken-and-egg problem, and you
cannot determine one without the other. In practice, a threshold is to be defined belowwhich certain
ambient conditions will not be estimated.
In the next section, this theoretical measure of observability is incorporated into a closed-loop wind
farm controller synthesis. The purpose of this observability check is to decide whether or not to
estimate the turbulence intensity. In practice, this will lead to the following: If there is little to nowake
interaction in the wind farm, the measurements are poorly correlated with the turbulence intensity.
Hence, the turbulence intensity is not estimated, and only the wind direction and wind speed are
estimated. Contrarily, withmorewake interaction, the turbulence intensity is estimated in addition to
thewind speed andwinddirection. To further brings confidence to the estimated ambient conditions,
and thereby to the wind farm control algorithm.
4.3 Wake steering under time-varying inflow conditions

With a closed-loop control framework as proposed in Section 4.1, and a theoretical measure of ob-
servability as defined in Section 4.2, an integrated solution is now proposed and tested in this section.
The results of this research have been published in an article submitted to the Renewable Energy
journal. This publication is outlined in Section 4.3.1. A number of important findings and a short
discussion follow in Section 4.3.2.
4.3.1 Methodology and results

Most wind farm control algorithms in the literature have been tested under extremely simplified
conditions: typically low- to medium-fidelity simulation environments, under constant inflow condi-
tions, and in an idealized setting where the wind farm control algorithm has full knowledge about
the inflow conditions. In practice, none of these assumptions are valid, and the research field should
work towards pushing the level of realism in their control validation tests. The work presented in
this section showcases a closed-loop control algorithm that is built to adapt to continuously chang-
ing ambient condtions, model mismatches and uncertainties in wind turbine measurements. This
algorithm is then tested in high-fidelity simulation with time-varying inflow conditions as first of its
kind in the literature.
The remainder of this section shows the article in preparation for submission to the Renewable En-
ergy journal, expecting publication in 2020.
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FLORIS under time-varying inflow conditions
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Abstract

With the global growth of wind energy comes a rise in academic interest
towards further improving the efficiency of wind turbines and wind farms.
Wind farm control attempts to coordinate turbines to improve the collective
efficiency. However, most wind farm control algorithms proposed in the li-
terature assume a constant inflow, whereas several properties of the inflow
such as its direction and speed continuously change over time in reality.
Furthermore, the inflow properties are typically assumed known in the lite-
rature, which is a fundamentally compromising assumption to make. This
paper presents a novel, closed-loop controller that continuously estimates the
ambient conditions supported by a theoretical notion of observability, upon
which it maximizes the power yield of the farm through yaw-based wake
steering. This algorithm is tested in a high-fidelity simulation environment
with time-varying inflow conditions on a 6-turbine wind farm. To the best of
the authors’ knowledge, this is the first farm control solution tested in a high-
fidelity simulation with such inflow variations. Over 5000 s of simulation, a
gain of 1.1% in energy yield is obtained. Paired with this improvement comes
the inevitable increase in yaw actuator duty cycle and a negligible change
in the blade-root out-of-plane fatigue loads. A comparable simulation sub-
ject to time-invariant inflow conditions, as typically shown in the literature,
yields a gain in power yield of 8.6%. These results highlight the potential of
the proposed controller, addressing most uncertainties involved in real-world
wind farms. This solidifies the controller as perhaps one of the first realistic,
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robust, closed-loop solutions for yaw-based wake steering.

Keywords: closed-loop wind farm control, time-varying inflow, wake
steering, ambient condition estimation, FLORIS, large-eddy simulation

1. Introduction

In the Dutch “Klimaatakkoord” (Rijksoverheid, 2019), the Dutch go-
vernment promises a reduction of carbon-dioxide emissions of 49% by 2030
compared to 1990. By 2050, the emission of greenhouse gases must have been
reduced by 95% compared to the emissions in 1990. Towards this goal, the
Dutch government has been installing an increasing number of wind farms.
By 2030, the goal is to have 11 GW of wind energy installed off the coast of
The Netherlands, accounting for 40% of the national electricity demand.

As the global installed capacity of wind energy continues to grow, so
does the academic interest towards further improving the efficiency of wind
turbines and wind farms. One such research field is control engineering. In
the past, the focus of control engineering has been on individual wind turbine
control. More recently, the focus has shifted from wind turbine towards wind
farm control, in which turbines are coordinated with one another to achieve
a certain collective objective.

A general distinction can be made between two strategies of wind farm
control, namely induction control and wake steering. The former aims at
derating upstream turbines, which purposely lowers their power capture in
order to leave more wind for turbines in subsequent rows. This is accomplis-
hed through pitching the turbine blades and adjusting the generator torque,
and is typically used for active power control (e.g., Shapiro et al., 2018;
Boersma et al., 2019) and load mitigation strategies (e.g., Kanev et al.). The
second strategy, wake steering, displaces the wake downstream by misalig-
ning the rotor plane with the incoming flow. This is typically accomplished
by assigning a yaw misalignment to the turbine. The most common objective
of wake steering is power maximization. Yaw-based wake steering has shown
significant potential in high-fidelity simulation (e.g. Gebraad et al., 2016)
and real-world experiments (Campagnolo et al., 2016; Howland et al., 2019;
Fleming et al., 2019), with typical gains in wind-farm-wide power yield of
5% to 15%. The focus of this work is on yaw-based wake steering for power
maximization.

2
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Most of the wind farm control algorithms proposed in the literature take
the inflow wind field as time invariant. However, in reality, the wind field
entering a wind farm changes continuously due to fluctuations in the Earth’s
surface heating, among others. In consequence, it is of critical importance to
test farm control solutions under such time-varying inflow. Moreover, pro-
perties of the inflow such as the wind direction and wind speed are typically
assumed to be prior knowledge to the wind farm control solution, which is
a secondary, unrealistic, compromising assumption. Such control algorithms
are considered as open-loop solutions. This lack of appropriate measure-
ments on the inflow conditions, the related sensor uncertainties and a high
complexity in modeling of the relevant wind farm dynamics leads to the urge
for a closed-loop solution in wind farm control. The closed-loop model-based
framework presented in this work consists of two components, being model
adaptation and setpoint optimization, as depicted in Figure 1. Model adap-
tation consists of estimating the input parameters to a surrogate model that
are currently relevant for the wind farm. This surrogate model is a simplified
mathematical model of the wind farm dynamics with a low computational
cost. In practice and also in this work, model adaptation typically implies
the estimation of the ambient inflow condition, defined by the wind speed,
wind direction, and the turbulence intensity. Secondly, the setpoint opti-
mization leverages the adapted surrogate model to find the turbine control
setpoints that maximize a certain objective. In this work, the objective is
power maximization and the control setpoints are the turbine yaw angles.

The main focus in the wind farm control literature has been on surrogate
model development (e.g., Gebraad et al., 2016; Bastankhah and Porté-Agel,
2016) and control setpoint optimization methods (e.g., Marden et al., 2013;
Bay et al., 2018; Annoni et al., 2018). More recently, there has been an
increasing amount of interest towards the estimation of the ambient condi-
tions and dealing with the time-varying nature of wind (e.g., Annoni et al.,
2019; Rott et al., 2018; Simley et al., 2019; Doekemeijer and van Winger-
den, 2019). However, many of the wind farm control algorithms proposed in
the literature are merely tested on simplified simulation models, from which
no real conclusions can be drawn apart from a proof of concept. Further-
more, the algorithms that are tested in high-fidelity simulation and real-world
experiments typically assume a constant mean inflow wind direction, wind
speed, and turbulence intensity (Boersma et al., 2017). However, experi-
ments under such steady inflow conditions insufficiently represent real-world
scenarios, and thus much uncertainty remains concerning the true potential

3
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Figure 1: The closed-loop model-based wind farm control framework. A simplified sur-
rogate model of the wind farm is used to represent the flow and turbine behavior at a
low computational cost. The first step in the controller is model adaptation, implying
the estimation of the inputs relevant for the current wind farm situation. Typically, this
implies the estimation of the ambient conditions. Then, the turbine control setpoints are
optimized using the surrogate model, which are the turbine yaw angles in this work.

of wind farm control in actual farms.
A handful of articles exist that considered time-varying inflow conditions

for wind farm controller validation. Bossanyi (2019) has demonstrated a wind
farm control algorithm in a low-fidelity simulation with time-varying inflow
conditions. Furthermore, Ciri et al. (2017) presents a model-free control
algorithm that improves the performance of turbines inside a wind farm,
demonstrated through high-fidelity simulations under a time-varying inflow.
However, model-free algorithms for wind farm control methods such as wake
steering are fundamentally limited due to slow convergence rates combined
with the inherent variability of the inflow conditions (Boersma et al., 2017).

To the best of the authors’ knowledge, there is no literature on the asses-
sment of model-based wind farm control solutions in a high-fidelity environ-
ment with time-varying inflow conditions. Addressing this scientific gap is
invaluable for the practical validation and implementation of wind farm cont-
rol solutions, as time-varying inflow conditions are omnipresent in real-world
wind farms. The novel contributions of this article are:

1. a detailed fit of the surrogate wind farm model FLORIS to high-fidelity
simulation data.

2. a novel, sophisticated, model-based estimation algorithm that predicts
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the freestream wind direction, wind speed and turbulence intensity
using readily available measurements in commercial wind farms, assis-
ted by a theoretical measure of observability published in earlier work
(Doekemeijer and van Wingerden, 2019),

3. closed-loop wind farm controller validation in high-fidelity simulation
under time-varying inflow conditions,

The structure of this article is as follows. In Section 2, the surrogate model
used for controller synthesis is outlined. In Section 3, the closed-loop wind
farm controller is synthesized. This controller is tested in Section 4 through
high-fidelity simulation under time-varying inflow conditions, among others,
upon which the turbine energy yield and the turbine loads are investigated.
Finally, the article is concluded in Section 5.

2. Surrogate model

The closed-loop control architecture outlined in Figure 1 requires a sur-
rogate model describing the wind farm dynamics at a low computational
cost. This surrogate model serves both for the model adaptation and the
control setpoint optimization modules. Therefore, this model should, in an
accurate fashion, predict the flow and turbine behavior as a function of the
turbine control settings and the inflow wind field, while still being compu-
tationally tractable for real-time application. For this purpose, a popular,
static, control-oriented surrogate model is opted for, where several model
parameters are calibrated to high-fidelity simulation data.

2.1. Model definition

The surrogate model used in this work is the FLOw Redirection and In-
duction in Steady-state (FLORIS) model (Doekemeijer and Storm, 2018).
FLORIS predicts the time-averaged three-dimensional flow field and turbine
power capture of a wind farm for a predefined inflow. Since the surrogate
model is static, the computational cost for a single model evaluation is in the
order of 10−2 to 1 s. Hence, FLORIS appears promising for the implementa-
tion in real-time control applications. The general inputs and outputs of the
FLORIS model are shown in Figure 2. For a more detailed description of the
model, the reader is referred to the literature (Bastankhah and Porté-Agel,
2016; Crespo and Hernández, 1996; Katic et al., 1987).

5
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“FLOw Redirection and 
Induction in Steady-state”

Ambient conditions
Vertical inflow wind speed profile
Farm-wide mean wind direction
Ambient turbulence intensity

Control settings
Yaw angle of each turbine
Thrust setting of each turbine

Wind farm properties
Wind farm topology
Turbine properties (rotor diameter, 
hub height, gen. efficiency, …)

Model definition
Submodel choices
Tuning parameters

Local turbine conditions
Rotor-avg. wind speed
Local turbulence intensity
Turbine power capture

3D time-averaged 
flow field

Figure 2: Flowchart of the FLORIS model. This model has four classes of inputs: the
ambient conditions, the turbine control settings, the wind farm properties (e.g., layout),
and a set of model parameters. FLORIS maps these inputs in a static fashion to a set of
turbine outputs being the power capture and the three-dimensional flow field.

2.2. Model tuning prior to controller synthesis

Surrogate wind farm models typically contain many model parameters,
which are chosen empirically or according to idealized theory (e.g., Gebraad
et al., 2016; Bastankhah and Porté-Agel, 2016). For the surrogate model
leveraged in this work, there are a total of 10 free parameters that need to
be defined prior to simulation. Typically, the values of these parameters are
based on theoretical studies and wind tunnel experiments (Bastankhah and
Porté-Agel, 2016), but are known to vary with wind turbine type and various
wind farm properties (Doekemeijer et al., 2019, e.g.,). The success of the
controller largely relies on the accuracy of the surrogate model. Hence, in this
article, the parameters are tuned prior to controller synthesis in accordance
to high-fidelity simulation data of the wind turbine and wind farm of interest.
In this article, high-fidelity simulation data is generated using the large-eddy
simulation tool SOWFA, to be described in Section 4.1.

First, the power curve of a single turbine as a function of the yaw mi-
salignment in FLORIS is tuned. In this article, the wind farm of interest
contains DTU 10MW reference wind turbines (Bak et al., 2012). Currently,
FLORIS relies on a database of CP and CT coefficients for the 10MW turbine
for a range of wind speeds (U∞), yaw misalignment angles (γ), turbulence
intensities (I∞) and derating settings, generated by an aero-elastic code using
blade element-momentum theory. Based on a comparison with high-fidelity
simulation data, the power coefficient is scaled by a empirically found multi-
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Figure 3: The power curve according to FLORIS and according to SOWFA as a function of
the yaw misalignment angle. FLORIS is tuned to the data of two SOWFA simulations to
guarantee a better match in power capture due to a yaw misalignment, thereby increasing
the accuracy of the surrogate model.

plication factor of η(γ) = 1.08
cos γ

. . The result is shown in Figure 3.
Secondly, the wind profile behind a single turbine is tuned for. This is

done by minimizing the error in the predicted flow fields between FLORIS
and a set of 21 large-eddy simulations;

• 3 inflow conditions of a neutral atmospheric boundary layer (ABL).

– Uniform inflow; U∞ = 7.0 m/s with I∞ = 0%.

– Low-turbulence inflow; U∞ = 8.0 m/s with I∞ = 6%.

– High-turbulence inflow; U∞ = 8.0 m/s with I∞ = 12%.

• For each inflow condition, a range of 7 yaw setpoints is assessed.

– From γ = −30◦ to γ = 30◦ in steps of 10◦.

The optimal model parameters Ω? are found by minimizing the root-
mean-square error (RMSE) of the time-averaged flow field from SOWFA,
USOWFA ∈ RNu , and the flow field predicted by FLORIS, UFLORIS ∈ RNu , as

Jfit(Ω) =
1

Nu

Nu∑

i=1

wi
(
UFLORIS
i (Ω)− USOWFA

i

)2
. (1)

Here, the U -vectors are populated by taking Nu samples from the vertical
cross-stream slices (wake profiles) at x = 3D, x = 5D, x = 7D and x =
10D downstream, with D the rotor diameter. Furthermore, the weighing
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Table 1: Optimal model parameters after model fitting, including optimization bounds
(min and max ). It can be seen that none of the values are close to their optimization
bounds, which suggests no overfitting has occurred.

Symbol Relates to the... Min Max Value
ka wake expansion 0.05 1.5 0.537
kb wake expansion -0.01 0.02 -0.000848
ad wake deflection due to rotor rotation -1.0 1.0 0.0011
bd wake deflection due to rotor rotation -0.1 0.1 -0.0077
α distance of near-wake region 0.5 10.0 1.088
β distance of near-wake region 0.03 0.60 0.222
τa turbine-induced turbulence 0.07 10.0 7.84
τb turbine-induced turbulence 0.08 10.0 4.57
τc turbine-induced turbulence 0.001 0.50 0.43
τd turbine-induced turbulence -5.0 -0.01 -0.246

parameters are chosen as w3D
i = 1, w5D

i = 2, w7D
i = 2, and w10D

i = 1,
respectively, to emphasize a good calibration in the flow field at 5D and
7D downstream, as turbines are often sited at this distance. Table 1 shows
the optimized model parameters Ω? and the lower and upper optimization
constraints. The parameters lie sufficiently far away from their extrema
constraints, which suggests that the model was not overfitted.

2.3. Model validation

With the surrogate model calibrated for the individual turbine power
curve and the single wake profile, the next step is model validation conside-
ring multiple turbines. The parameter set Ω? is validated using unseen data
from three simulations of a three-turbine wind farm subjected to an inflow
of U∞ = 8.0 m/s and I∞ = 6.0% in a neutral ABL. In these simulations, the
first two turbines are misaligned with the inflow at γ1,2 = −20 deg, γ1,2 = 0
deg, and γ1,2 = 20 deg, respectively, with γ3 = 0 deg for all three cases. This
layout, inflow and operating conditions are chosen for a number of reasons.
Firstly, the second turbine is set up experiences a slower, more turbulent in-
flow, effectively testing the wake model for inflow conditions it was not tuned
for. Secondly, the third turbine operates in partially waked inflow, which is a
common condition often causing significant model discrepancies in surrogate
models (Mart́ınez-Tossas et al., 2018). Thirdly, the upstream two turbines
are purposely yawed in either direction to assess the model’s validity under
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Figure 4: The absolute error between the hub-height flow field from SOWFA and as
predicted by FLORIS in m/s. A great match is seen, especially in the far-wake regions
and in front of the downstream turbines. Generally, the near-wake region is difficult to
predict, and an accurate prediction near-wake flow is of less importance for wind farm
control.

realistic wake-steering operation.
Figure 4 shows the absolute error between the hub-height flow field from

SOWFA and as predicted by FLORIS for one of the three validation cases.
This figure clearly shows that errors largely originate in the near-wake re-
gion, which are not particularly of interest for wind farm control. Generally,
the far-wake regions and the flow in front of downstream turbines are well
predicted, which should in turn lead to accurate predictions of the energy
yield.

Furthermore, Figure 5 shows the cross-sectional wake profile at the tur-
bine hub height at several streamwise distances, x = 1000 m, x = 2000 m and
x = 2900 m. Generally, the conclusions drawn from Figure 4 are confirmed.
Additionally, this figure clearly shows an improvement of the parameter set
Ω? over the default parameter choice Ω0.

Thus, a good match is found between FLORIS with Ω? and the time-
averaged results from SOWFA for unseen data with multiple turbines and
more complicated wake interaction. This analysis brings sufficient confidence
in the surrogate model for it to be used in controller synthesis.

3. Controller synthesis

With the surrogate model defined, a closed-loop wind farm control solu-
tion can now be synthesized. The virtual wind farm studied in this article
contains six DTU 10MW turbines sited in a 3 by 2 layout, spaced 5D by 3D
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Figure 5: The wake profile at hub height for different locations downstream. An impro-
vement is seen for the optimized set of parameters, Ω?, with the default parameters from
the literature, Ω0 (Bastankhah and Porté-Agel, 2016; Crespo and Hernández, 1996; Katic
et al., 1987). Note that the wind speed outside of the wake appears higher in SOWFA.
This is due to speed-up effects modeled in SOWFA, but neglected in FLORIS.

1   

2  4

3

6

5

Figure 6: The six-turbine wind farm considered in this article. The turbines are
DTU 10MW turbines (Bak et al., 2012), spaced 5D apart longitudinally, and 3D apart
laterally.

apart, as shown in Figure 6. The model adaptation algorithm is described
in Section 3.1. The control setpoint optimization algorithm is described in
Section 3.2. An overview of the controller is given in Section 3.3.

3.1. Real-time model adaptation

Performance of the control solution is highly dependent on the assumed
ambient conditions inside the surrogate model. As not all ambient conditions
are measured (accurately) within the farm, a wind-farm-wide set of ambient
conditions must be estimated before the control settings can be optimized.

In previous work (Doekemeijer et al., 2019), the wind direction was es-
timated using the approach of Bertelè et al. (2017), assuming blade load
measurements and using blade element momentum (BEM) theory to de-
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rive the turbine inflow conditions. In this work, instead, a temporally and
spatially averaged freestream wind speed, wind direction and turbulence in-
tensity are estimated using the readily available generator power and wind
direction measurements of each turbine. This is achieved by minimizing the
cost function

J1(Ξ) =
1

NT

NT∑

i=1

λP

(
Pi − P̂i(Ξ)

)2
+
(
φi − φ̂

)2
, (2)

with NT being the number of turbines, λP a weighing term assigned as
2.0 · 10−14 found empirically, P and φ being vectors of length NT with the
time-averaged measured power and wind vane signals, respectively, and P̂
a vector of length NT with the estimated power signal of each turbine ac-
cording to the surrogate model. When sweeping over different hypothesized
ambient conditions Ξ, the yaw angles of the turbines in FLORIS are assumed
to be fixed and equal to the most recent nacelle orientation measurements.
Moreover, depending on the observability of the situation, we either estimate
three parameters or two parameters: Ξ = [φ̂, Û∞, Î∞] or Ξ = [φ̂, Û∞]. Ob-
servability in this sense refers to the degree of information contained within
the measurements available, and whether this suffices to estimate a certain
set of parameters. A more elaborate analysis concerning the observability
and the choice of Ξ is performed in Doekemeijer and van Wingerden (2019),
and the interested reader is referred to this work for further reference.

The relative degree of observability for the various wind directions of the
6-turbine wind farm of Figure 6 is shown in Figure 7. The top colormap
shows the relative degree of observability for when Ξ = [φ̂, Û∞, Î∞] under
the assumption that turbine power and wind direction measurements are
available. A value of 0 implies that not all ambient conditions can be derived
from the measurements, while a value of 1 refers to the best-estimatible
situation. The lower colormap saturates to values of 0 and 1 exclusively,
with a threshold of 0.20 found empirically.

Within the farm control solution, this saturated colormap is used to decide
whether to estimate Ξ = [φ̂, Û∞, Î∞] (black zones) or to only estimate
Ξ = [φ̂, Û∞] (white zones). If Ξ = [φ̂, Û∞], the turbulence intensity is
assumed to be equal to the last estimated value, and only the wind direction
and wind speed estimates are updated. Performing the observability analysis
with Ξ = [φ̂, Û∞] leads to a fully observable situation over the entire wind
rose. By scheduling what parameters to estimate, I∞ is only estimated when
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Figure 7: The observability of of the situation with Ξ = [φ̂, Û∞, Î∞] and when both
turbine power and wind direction measurements are available. The top colormap shows
the observability on a scale of 0 (not observable) to 1 (most observable). The bottom
colormap saturates to values of 0 and 1, with a threshold at 0.20. The observability is
shown for the complete rose of wind directions. These plots are produced under a true
TI of 6% and U∞ = 8 m/s. It is confirmed by simulation that the observability does
not significantly vary over the TI and U∞. Within the farm control solution, the bottom
colormap is used to decide whether to estimate Ξ = [φ̂, Û∞, Î∞] (black zones) or to only

estimate Ξ = [φ̂, Û∞] (white zones).

there is sufficient information in the measurements to do so.1

3.2. Real-time control setpoint optimization

After estimating the ambient conditions, the turbine yaw angles are op-
timized and collected in a look-up table (LUT) to maximize the steady-state
wind farm power production. The cost function to be minimized is

J2(γ) = −
NT∑

i=1

P̂i(γi). (3)

Following this optimization, FLORIS assigns strong jumps in the yaw angle
for small changes in the wind direction as to be optimal (Rott et al., 2018).
These angles are therefore smoothened in post-processing using a Gaussian
distribution along the wind direction with a standard deviation of 1.5◦.2 The
turbines are set to not exceed a 30◦ yaw misalignment for reasons of structural
loading.

1Note that Figure 7 of this paper is largely identical to Figure 7 of Doekemeijer and
van Wingerden (2019), though plotted in a different fashion (linearly vs. radially).

2A more elaborate study will be necessary to determine the degree of smoothing that
yields the highest energy yield. This will strongly depend on the variability of the wind
and the accuracy of the surrogate model. More variability and a lower accuracy will lead
to more smoothing and more conservative yaw setpoints.
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Figure 8: Optimized yaw angles as a function of wind direction for I∞ = 0.07.

The smoothened, optimized yaw angles for the 6-turbine case with a wind
speed of U∞ = 8 m/s and a low-to-medium turbulence intensity of I∞ = 0.07
are shown in Figure 8. These optimal yaw angles are largely insensitive to
the wind speed in region 2 operation (Kanev, 2020). The wind direction
in Figure 8 is plotted along the x-axis, where 0 deg means wind flowing
from west to east, and 90 deg means wind flowing from south to north.
In the 6-turbine layout, this means that turbine 1 is always upstream, and
turbine 6 is always downstream. Hence, turbine 1 experiences a lot of yaw
misalignment, while turbine 6 remains aligned over the entire wind range. It
should be noted that, as the turbulence intensity increases, the flow recovers
more quickly, wake losses diminish, and the optimal yaw misalignment angles
decrease – there is less to be gained at downstream turbines.

3.3. An overview

The closed-loop control algorithm is synthesized by combining the esti-
mator from Section 3.1 with the optimizer from Section 3.2. A pseudo-code
is shown in Algorithm 1, where the controller generates new control setpoints
every 20 seconds.

4. Simulation results

In this section, the controller synthesized in Section 3 is tested in high-
fidelity simulation. For this purpose, a large-eddy simulation model is used.
This model is described in Section 4.1. Then, two simulation cases are in-
vestigated, respectively a worst-case scenario and a best-case scenario. In
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Algorithm 1 Pseudo-code of the closed-loop control algorithm

k ← 0
while wind farm controlled enabled do

%% Gather time-averaged measurements
P ← SCADA measurements
φ ← SCADA measurements

if t = 20 s, 40 s, 60 s, 80 s, . . . then
k ← k + 1

%% Determine observability of situation
φ̂k ← 1

NT
(φ1 + φ2 + . . .+ φNT

)

O ← observability(φ̂k)

%% Determine ambient conditions
if O ≥ 0.20 then

[φ̂k, Ûk
∞, Î

k
∞]← min (J1)

else
Îk∞ ← Îk−1∞
[φ̂k, Ûk

∞]← min (J1)
end if

%% Determine optimal yaw setpoints

γ ← lookupYawTable
(
φ̂k, Ûk

∞, Î
k
∞

)

end if
end while
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Table 2: Important variables for the turbines and numerical mesh in SOWFA

Variable Value
Turbine type DTU 10MW (Bak et al., 2012)
Rotor approximation Actuator line (ALMAdvanced)
Inter-turbine spacing 5D × 3D with D = 178.3 m
Domain size 3.0 km × 3.0 km × 1.0 km
Cell size (base mesh) 10 m × 10 m × 10 m
Cell size (refined, near rotor) 2.5 m × 2.5 m × 2.5 m
Blade epsilon 5.0 m

the first case, the inflow wind direction varies significantly throughout the
simulation to stress-test the control algorithm. In the second case, the inflow
is time invariant and chosen to yield a situation with high wake losses. In
Section 4.2, the estimation submodule is assessed based on the time-varying
simulation case. Then, in Section 4.3, the optimization submodule of the
controller is evaluated by looking into the energy yield of the turbines. Fi-
nally, in Section 4.4, the yaw actuator duty cycle and the structural loads
on the turbine blades are investigated to get a notion of the effect of wake
steering on the upstream and downstream turbines.

4.1. The Simulator for Wind Farm Applications

For surrogate model validation and controller verification, the high-fidelity
Simulator for Wind Farm Applications (SOWFA) model developed by the
National Renewable Energy Laboratory (NREL) is used (Churchfield et al.,
2012). SOWFA is a large-eddy wind farm simulation model that leverages
the actuator line model to determine the forces applied by each turbine on the
flow. In recent work, this high-fidelity simulator was coupled with MATLAB
using a network-based communication interface (Doekemeijer et al., 2019)
for straight-forward control algorithm testing. An overview of the turbine
layout and numerical mesh scheme is shown in Figure 6 and Table 2.

4.2. Model adaptation performance

The first component of the closed-loop controller synthesized in Section 3
is the model adaptation block, as shown in Figure 1. For the first simulation
case, the 6-turbine wind farm experiences a wind field of which the inflow
direction changes often over time, as shown in the left subplot of Figure 9. In
this figure, the dashed gray lines show the true values from SOWFA, while the
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Figure 9: Overview of the estimator’s performance in reconstructing the ambient conditi-
ons for the simulation with time-varying inflow. The true values are shown as gray, dashed
lines. The ambient conditions estimated by the controller are shown as solid black lines.
Generally, estimates are very accurate for the wind direction (WD) and wind speed (WS),
while it is far less accurate for the turbulence intensity (TI).

solid black lines show the estimated values according to the controller. The
true freestream wind speed is approximately 8 m/s and the true freestream
turbulence intensity is around 9%.

Taking a closer look at Figure 9, it becomes clear that the wind direction
(WD) and the wind speed (WS) are estimated accurately and consistently.
Note that wind direction is by far the most important quantity to estimate,
as the optimal yaw setpoints are most sensitive to this variable, and less
so for the wind speed and turbulence intensity (Kanev, 2020). The only
variable that calls for concern is the turbulence intensity. This variable is
only estimated when the situation is sufficiently observable, as defined in
Section 3.1. The wind direction often leads to the situations with little to no
wake interaction, and hence the turbulence intensity is not estimated until
about 3000 s into the simulation. Then, it is often estimated to be very high,
up to 35%, which does not match with the physical value from SOWFA.
In FLORIS, a high turbulence intensity leads it to predict very high wake
recovery. An explanation for this behavior is the rapid fluctuations in the
wind direction. When the inflow changes direction, an observable situation
arises, and the turbulence intensity is estimated using the turbine power me-
asurements. However, if the wakes have not yet propagated/aligned with the
new inflow direction, these turbines still generate a lot of power and operate
as if they are in freestream flow. The control algorithm responds to this by
assigning a very high turbulence intensity to FLORIS, predicting that the
wakes recover before reaching the downstream turbines – thereby effectively
minimizing the error between the measurements and what is predicted by
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FLORIS. Hence, one may consider this erroneous estimation of the TI as the
controller attempting to account for wake propagation in a steady model.
As the wakes further propagate downstream and a steady situation arises in
SOWFA, which typically takes in the order of 102 s, the estimated TI should
settle to more accurate values.

The flow field and turbine power signals for SOWFA and FLORIS are
shown in Figure 10. As the turbine power signals are used for model adapta-
tion, it is no surprise that the turbine power signals match very well between
SOWFA and FLORIS. Noteably, an interesting difference between SOWFA
and FLORIS is that FLORIS predicts many situations of symmetry, in which
turbines are predicted to capture an equal amount of power. In SOWFA, ho-
wever, the turbulent inflow unavoidably leads to differences in power capture
between turbines.

Furthermore, comparing the flow field at hub height from SOWFA with
that predicted by FLORIS in Figure 10 allows us to conclude that the esti-
mation algorithm performs very well. The controller is able to reconstruct
the flow field at a high accuracy, even under significant variations in the
inflow wind direction. Note that there is a significant model discrepancy
between SOWFA and FLORIS, as FLORIS is a steady-state model and thus
completely neglects any time dependencies. Moreover, In FLORIS, several
fundamental assumptions are made on the single wake profile and the inte-
raction between multiple wakes. Most flow estimation errors are expected
to be due the absence of secondary steering effects (Mart́ınez-Tossas et al.,
2018) and time-dependent wake propagation in the surrogate model.

When investigating the situations in which the turbulence intensity was
poorly estimated (e.g., for t = 4900 s, recalling Figure 9) in Figure 10,
one can see that this does not particularly lead to problematic situations.
Actually, the flow field and the turbine power signals show a good match
between FLORIS and SOWFA, even under a wrongfully high estimate of TI.
Since there is little wake interaction due to the particular inflow situation at
this time instant, there is insufficient information to correct the TI estimate
(unobservable). At the same time, little wake interaction leads to little to
no wake steering. Thus, these two are complementary. If wake interactions
would increase due to a change in the inflow, the observability would increase,
leading to more accurate TI estimations. With an accurate estimate of TI,
the full potential of wake steering is leveraged. Note that, if the turbulence
intensity is estimated to be too high, this would only lead to a reduction in
the assigned yaw angles and in the worst-case scenario, to greedy operation.

17

D2.5 - Integrated wind farm controllers public

Copyright CL-Windcon Contract No. 727477 Page 74



Figure 10: The estimation performance of the closed-loop controller for the simulation with
time-varying inflow. The true farm’s flow field and turbine power signals from SOWFA
are compared to those estimated by FLORIS. This figure clearly shows that the wind
farm controller accurately predicts the power signals and flow fields of SOWFA, even
though there are significant model discrepancies. Most flow estimation errors are due the
absence of secondary steering effects (Mart́ınez-Tossas et al., 2018) and time-dependent
wake propagation in the surrogate model.
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Thus, an erroneous of the TI will, in the worst case, only lead to a suboptimal
configuration of yaw angles, and not perform worse than a baseline, greedy
control strategy.

4.3. Setpoint optimization performance

With the ambient conditions estimated, the second component of the
closed-loop controller is setpoint optimization, as shown in Figure 1. In
this work, that consists of the optimization of the turbine yaw misalignment
angles to maximize the power extraction of the wind farm.

The turbine power capture from SOWFA for the case with time-varying
inflow is shown in Figure 11. In this figure, the relative power capture of each
turbine compared to the greedy-controlled scenario is shown averaged over
the 5000 s of simulation. Since the wind changes from an inflow from left
to right to an inflow from bottom to top and anywhere in between, turbines
1, 2, 3 and 5 are most often upstream, while turbines 4 and 6 are mostly
downstream. Hence, wake steering induces most losses on turbines 1 and 3
by yawing these turbines, leading to significant energy gains on turbines 4
and 6. Over the total 5000 s of simulation, the energy yield is 1.1% higher
with the closed-loop controller compared to the baseline case.

Note that 1.1% is lower than most values cited in the literature (Boersma
et al., 2017), as those studies typically only focus on cases with significant
wake losses. In this simulation, there are many situations with little to no
wake interaction. Furthermore, a noticeable gain of 1.1% under the large
discrepancies between FLORIS and SOWFA is a very promising (and more
realistic) estimate of the true potential of wake steering.

For comparison, a second simulation is performed with a constant inflow
from left to right, in which turbines 3-6 operate in waked flow. The relative
power capture for this simulation is shown in Figure 12. In contrast to the
first simulation case, there are consistent wake losses throughout the 5000 s
of simulation, and wake steering leads to consistent gains. In total, a gain
of 8.6% is found for the 6-turbine wind farm using the proposed controller.
This agrees with the results typically cited in the literature (Boersma et al.,
2017) for such wake-loss-heavy situations.

4.4. A deeper look into the yaw actuator duty cycle and structural loads

Wake steering shows to be very promising in increasing the energy yield
of a wind farm. However, in contrast to the energy gains, the increase and
uncertainty surrounding the actuator duty cycle and the structural loads on
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Figure 11: Relative turbine power capture compared to the case in which turbines are
controlled in the traditional, greedy manner for the case with time-varying inflow. The
turbines that are most often standing upstream experience most losses, as they are most
often misaligned with the inflow. The largest gains are attained by the turbines that
operate most often in a waked inflow. The total energy gain of the wind farm is 1.1%.

the turbines have prevented the implementation of wake steering in existing
wind farms. This subsection addresses these two topics. However, more
research is necessary to provide confident estimates of the change in loads on
the turbines for wake steering.

Yaw actuator duty cycle under wake steering

The change in the yaw actuator duty cycle (yaw travel) of each turbine
for the first simulation case with time-varying inflow conditions is shown in
Figure 13. From this figure, it is clear to see that wake steering has a great
influence on the yaw actuator duty cycle. Specifically, for the upstream tur-
bines, an increase in yaw travel of approximately 200% is seen. Furthermore,
even for the second row of turbines, an increase in yaw travel of approxima-
tely 60% is seen. This yaw travel can be related back to Figure 8, in which
relatively large gradients can be seen for small changes in the wind direction.
One may reduce the yaw travel by further smoothing the optimized yaw an-
gles from Figure 8, but this may go at the loss of energy yield. In a practical
controller implementation, a trade-off would have to be made according to
the yaw actuator limits, the wind farm layout, and the wind rose of the wind
farm.

Fatigue loads on the blade roots

The damage-equivalent loads (DELs) of the out-of-plane bending mo-
ments at the blade roots are calculated following the Palgrem Miner’s rule
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Figure 12: Relative turbine power capture compared to the case in which turbines are
controlled in the traditional, greedy manner for the case with constant inflow (zero degrees,
left to right in Figure 6). Turbines 1 and 2 experience most losses, as they are most often
misaligned with the inflow. The largest gains are noticed on turbines 5 and 6. The total
energy gain of the wind farm is 8.6%.

(Cosack, 2010), as

DEL = m

√∑n
i=1 ∆Smi ·Ni

Nref
. (4)

In this equation, m is the inverse of the material Wöhler slope and Nref
is a reference number for the total amount of cycles, taken to be 1 here,
Si is the mean load range value for a particular bin, and Ni is the number
of occurences within the bin. The load cycles are calculated following the
popular rainflow counting method. Note that the blades of the DTU 10MW
turbine are manufactured with a mix of glass fiber, carbon fiber, and balsa
(Bak et al., 2012). Hence, the DEL values are evaluated with both m = 10
(glass fiber) and with m = 14 (carbon fiber), and the highest value of the
two will be shown.

The DELs for the first simulation study with time-varying inflow are
plotted in Figure 14. The loads between the three blades are very similar,
and hence the blade-averaged DELs are shown. From this figure, it is seen
that the DELs mostly decrease, apart from turbine 1, which always operates
upstream and most often at a yaw misalignment. In the case of turbine 1,
SOWFA predicts a relatively small increase in DEL for operating under a yaw
misalignment, while predicting significant decreases in DEL for the other 5
turbines due to a less-waked inflow caused by wake steering.

The DELs for the second simulation study with constant inflow are shown
in Figure 15. This figure shows the same trends as the case with time-varying

21

D2.5 - Integrated wind farm controllers public

Copyright CL-Windcon Contract No. 727477 Page 78



Figure 13: Relative yaw travel compared to the greedy-operated case for the simulation
with time-varying inflow. A significant increase in yaw travel is noticed, especially in the
most upward turbines.

Figure 14: Damage equivalent loads for the blade root out-of-plane bending moments for
the simulation case with time-varying inflow conditions, normalized with respect turbine
1 in greedy operation.

inflow. Specifically, the DELs do not noticeable change with wake steering;
there is a small increase in DEL for turbine 1, and a small decrease for all
other turbines.

Generally, wake steering seems to have a relatively small effect on the
blade root out-of-plane bending moments in this simulation study. There
is a delicate balance between the change in loads due to yawing a turbine,
and due to the change in the wake profile as a result of the yawing of an
upstream turbine (Mendez Reyes et al., 2019). Therefore, simulations with
a higher-fidelity aero-elastic model (e.g., using OpenFAST (National Rene-
wable Energy Laboratory (NREL), 2019)) and physical experiments are ne-
cessary to further solidify such statements.
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Figure 15: Damage equivalent loads for the blade root out-of-plane bending moments for
the simulation case with constant inflow conditions, normalized with respect turbine 1 in
greedy operation.

5. Conclusions

In this article, a novel, closed-loop wind farm control solution was pro-
posed. This control solution relies on a surrogate model of the wind farm.
This surrogate model is used in twofold. Firstly, it is used to estimate the
ambient conditions, supported by a theoretical measure of observability to
avoid the estimation of quantities about which no information is available.
Secondly, the surrogate model is leveraged to optimize the turbine control
setpoints for power yield maximization.

This closed-loop control solution was then tested in high-fidelity simula-
tion under a time-varying inflow, being the first of its kind in the literature.
The wind direction of the inflow in the simulation was scheduled to change
often and with steep gradients to stress-test the controller. Compared to
baseline operation, a total gain in energy yield of 1.1% was found for a 6-
turbine wind farm. Furthermore, from an actuator duty cycle perspective,
the yaw travel of the turbines increased with up to 200%. Additionally, the
damage equivalent loads of the blade root out-of-plane bending moments did
not change noticeably compared to the baseline controller. In a second simu-
lation, the inflow was time-invariant and chosen to yield a wake-loss-heavy
situation. In this simulation, the controller yielded a wind-farm-wide energy
gain of 8.6% compared to baseline operation. This agrees very well with stu-
dies in the literature which mostly consider wind farms with time-invariant
inflows (Boersma et al., 2017).

The results presented in this article highlight the potential of the propo-
sed controller, even under time-varying inflow conditions, addressing most
uncertainties involved in real-world wind farms. This solidifies the propo-
sed control solution as perhaps one of the first realistic, robust, closed-loop
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solutions for yaw-based wake steering.
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4.3.2 A continued discussion

The closed-loop wind farm control solution presented in Section 4.3.1 explicitly deals with time-
varying ambient conditions, which are unavoidable in real-life wind farms. Which ambient conditions
are estimated strongly depend on themeasurements available and the current conditions inside the
farm (i.e., the wind direction). A theoretical measure of observability provides a guideline for this
problem, as presented in Section 4.2.
High-fidelity simulations show the performance of the control algorithm, yielding a 1.1% gain in
power capture in a stress-test-like simulation set-up where the wind direction changes often and
with strong jumps. Furthermore, a more classical, quasi-dynamic simulation in which the wind direc-
tion does not change over time leads to a 8.6% increase in energy extraction by the wind farm, which
is in line with what is found typically in the literature. The controller does lead to a significantly higher
yaw travel, and a negligible change in the turbine out-of-plane blade root fatigue loads. Overall, while
a deeper look has to be taken into the increase in yaw actuation, this article takes a big step towards
a realistic, robust, closed-loop wind farm control algorithm that is able to deal with the time-varying
nature of wind, and the uncertainties involved in real-life wind farms.
4.4 Conclusions

In the remainder of this European project, closed-loop wind farm control solutions leveraging wake
redirection control will be tested for wind farms with DTU 10MW turbines in high-fidelity simulation.
The concepts of induction control and wake steering will also be tested on a real-life, onshore wind
farm in Sedini, Italy. However, according to the results presented in this work and in existing liter-
ature, the expectation is that induction control will not lead to significant (if any) improvement in
power yield, at least under the current conditions that control algorithms are assessed for. On the
other hand, wake steering has a more hopeful forecast in terms of increasing the power production
of the wind farm. This will be part of deliverable D3.7.
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5 COMBINED FEEDBACK-FEEDFORWARD WAKE REDIRECTION CONTROL

5.1 Introduction

Currently, wind farms are operatingwith individual controllers at eachwind turbine. Inwind farm this
might lead to sub-optimal operation conditions. Moreover the power yield of the wind farm might
heavily decrease compared to the possible energy production the wind turbines could deliver at a
certain wind speed. This is due to flow interactions in the wind farm. They cause suboptimal inflow
conditions for some wind turbines in a wind farm and therefore lead to less energy production and
furthermore higher structural loads. Altogether, an improvement of the flow situation in the wind
farm can result in significant better operation performance. Wake redirection has been investigated
to serve as a tool to optimize the flow situation in a wind farm.
In this strategy, the goal is to (partially) redirect the wake around the downstream turbines by using
the yaw actuator. This changes the inflow condition for downstream turbines and lead to potentially
more power extraction from the wind. First work regarding the effect of yawing a turbine on the flow
can be found in [19, 34]. Although yaw effects on the flow are still not completely understood, results
such as presented in [31, 54, 37] are providingmore insight. They study the effect of wake redirection
in high fidelity simulation and assess the ability to redirect the wake. First steady-state engineering
wake model that describes wake deflection due to yaw is presented in [39]. Such types of models
have appeared to be useful in wake redirection control [17, 33, 47, 30] where the objective is to
find the turbine’s yaw angles that maximize power production. More details are summarized in the
tutorial regarding the utilization of steady-state models in control in [21]. Recently, a steady-state
model has been presented in [10] whereas this farm model is based on the steady Navier-Stokes
equations. This model has been incorporated in the currently online available FLOw Redirection and
Induction in Steady-state (FLORIS), an optimization tool that aims to find optimal yaw settings that
maximize the farm’s power production 4.
Applying the optimal yaw settings to the wind farm is called open-loop or feedforward control. Based
onoffline computations the yawangles are set basedon atmospheric conditions, like e.g. wind speed,
turbulence intensity, andwinddirection. Themethodology improves the total power yield and the the
flow situation in the wind farm and has shown promising results in various investigations. The main
drawback in the methodology is the uncertainty of the steady-state wake model, and additionally,
the lack of feedback of flow information.
In contrast the methodology of lidar-based wake redirection feedback control has been introduced,
see [51] and [50]. A remote sensing device, a lidar system, is measuring wind speed information in
the wake of the wind turbine. With the help of estimation techniques, see [50], the wake position
is assessed. A wake redirection controller uses the information to set the yaw offset such that a
desired wake redirection is achieved. The advantages of the approach are the adaptivity to various
uncertainties, the dynamic response to changes and the possibility to compensate for disturbances

4FLORIS is online available at: https://github.com/TUDelft-DataDrivenControl/FLORISSE_M
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like temporal cross-wind, see [48]. Drawbacks are the dependency on an additional measurement
device, its measurement quality, and availability. Further the trade-off between measuring close
enough to increase the bandwidth of the controller and measuring far enough to measure a wake
deflection is a difficult task. Here, measuring in a distance of 2.5 to 3 times the rotor diameter has
shown to result in a feasible trade-off. Furthermore, the determination of the desired wake position
is still a challenge.
In the following, a combination of both approaches is presented. The general idea of the approach is
to separate tasks between feedforward and feedback control to take advantage of both methodolo-
gies. Results from this approach have been submitted to Wind Energy Science Journal Citation will
be added as soon as available., discussed in Deliverable 3.5, and were presented at the WESC Con-
ference 2019 in Cork . The main aspects in this chapter are on the controller design procedures and
analysis of the controllers. Furthermore, the challenges of this approach are later discussed and pos-
sible solutions are suggested. The chapter is structured as follows: First the publication is reprinted
to give an introduction to the topic and to present the results obtained by the concept. Then in the
second part, the controller design is described in detail and analyses are given. Finally, remarks and
conclusions are stated and possible future work is described.
5.2 Methodology and results

The remainder of this section shows the corresponding submission to the Wind Energy Science jour-
nal which has the current status of a discussion paper, Citation will be added as soon as available..
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Abstract. This work presents a combined feedforward-feedback wake redirection framework for wind farm control. The

FLORIS wake model, a control-oriented steady-state wake model is used to calculate optimal yaw angles for a given wind

farm layout and atmospheric condition. The optimal yaw angles, which maximize the total power output, are applied to the

wind farm. Further, the lidar-based closed-loop wake redirection concept is used to realize a local feedback on turbine level.

The wake center is estimated from lidar measurements 3 D downwind of the wind turbines. The dynamical feedback controllers5

support the feedforward controller and reject disturbances and adapt to model uncertainties. Altogether, the total framework is

presented and applied to a nine turbine wind farm test case. In a high fidelity simulation study the concept shows promising

results and an increase in total energy production compared to the baseline case and the feedforward-only case.

1 Introduction

Currently, wind farms are operating with individual optimal turbine settings thus not taking wake interactions into account.10

This strategy is referred to as greedy wind farm control. The two main wind farm control strategies in which wake interactions

are taken into account are axial induction control and wake redirection control (see Boersma et al. (2017) for an overview).

In the former, the idea is to deviate the blade pitch angle and tip speed ratio from greedy settings in order to enhance farm

performance. Changing these control signals alters, among others, the wind velocity deficit in the turbine’s wake hence the

power production of downstream turbines. One of the first papers that proposes the idea of axial induction control can be15

found in Steinbuch et al. (1988). By now, scientific results seem to indicate that by using a currently available steady-state

model to evaluate optimal axial induction settings, no power improvement on a farm level can be achieved Annoni et al.

(2018). However, recent scientific results indicate that by temporally changing axial induction settings, the farms power output

in the therein used wind farm simulators can be improved by using control Ciri et al. (2017); Munters and Meyers (2018).

Interestingly, the results in Ciri et al. (2017) seem to indicate that downstream turbine need to deviate from greedy in order20

to improve the farm’s power production while in Munters and Meyers (2018), the control settings of the upstream turbines

are temporally changing resulting in an improvement of the farm’s power output indicating the necessity for more research.

The second wind farm control strategy is wake redirection control and studied in this paper. In this strategy, the goal is to

1
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(partially) curtail the wake around the downstream turbines by using yaw settings such that inflow condition for downstream

turbines change and potentially more power can be extracted from the wind. Pioneers work regarding the effect of yawing a

turbine on the flow can be found in Clayton and Filby (1982); Grant et al. (1997). Although yaw effects on the flow are still

not completely understood, results such as presented in Fleming et al. (2014); Vollmer et al. (2016); Howland et al. (2016) are

providing more insight. To the best of the authors knowledge, Jiménez et al. (2010) presents the first steady-state engineering5

wake model that describes wake deflection due to yaw. Such types of models have appeared to be useful in wake redirection

control Campagnolo et al. (2016); Gebraad et al. (2016); Quick et al. (2017); Fleming et al. (2017b) where the objective is to

find the turbine’s yaw angles that maximize power production. A tutorial regarding the utilization of steady-state models in

control can be found in Doekemeijer et al. (2019). A recent steady-state model has been presented in Bastankhah and Porté-

Agel (2016) whereas this farm model is based on the steady Navier-Stokes equations. This model has been incorporated in the10

currently online available FLOw Redirection and Induction in Steady-state (FLORIS), an optimization tool that aims to find

optimal yaw settings that maximize the farm’s power production 1.

The control paradigm when employing previously described steady-state models can be seen as open-loop (feedforward).

That is, yaw settings are found using a steady-state model and are then applied to the farm. Assuming that the steady-state

model describes accurately enough the farm’s behaviour in yawed conditions and no changes in the atmospheric conditions15

occur, the open-loop control paradigm could potentially work. However, both assumptions are never completely satisfied. For

example, a temporal change in wind direction, which can be seen as a disturbance, will result in non-optimal yaw settings. In

this paper we therefore introduce additional local feedback controllers that steer the wakes to set point wake positions. The idea

of introducing local yaw controllers to steer the wake to a desired position has been introduced before in for example Raach

et al. (2017c) and successfully tested in a high-fidelity wind farm model Raach et al. (2018). In this work, both feedforward20

and feedback are combined in order to steer wakes in the farm to desired positions that enhance the power capture of a wind

farm.

The paper is structured as follows: First the objectives of the tasks of the presented work are assessed and defined in section

2 and the total control framework is presented. The controllers are describted in section 3: in section 3.1 the feedforward

wake redirection methodology is presented and section 3.2 describes the feedback counterpart that supports the feedforward25

controller. The effectivity of the combination between feedforward and feedback control is assessed in a simulation study with

a nine turbine wind farm layout in section 4. Finally, conclusions are given in section 5.

2 Objectives and Control Framework

2.1 Objectives

The main objectives of this paper are the following:30

– Introduction of the feedforward+feedback wake redirection framework
1FLORIS is online available at: https://github.com/TUDelft-DataDrivenControl/FLORISSE_M

2
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Figure 1. The block diagram of the general setup: feedforward-feedback wake redirection control. In the estimation task the lidar system is
measuring in the wake of the wind turbine. From the measurement data the wake position is estimated. In the control task the feedforward-
feedback controller use the estimated wake position as well as the atmospheric conditions of the setup to provide the yaw angle command to
the wind turbine.

– Presentation of the control synthesis of the feedforward+feedback wake redirection

– Demonstration of the concept in an example case in the high-fidelity simulator SOWFA.

2.2 Control framework

The framework of feedforward-feedback wake redirection control consists of a feedforward part in which the optimal yaw

settings are defined for given atmospheric conditions, e.g. wind speed, wind direction, and turbulence intensity. Further, the5

feedback controller is continuously active during operation on each wind turbine. Figure 1 depicts a block scheme of the

setup. However, in order to use feedback control we need 1) measurements of the farm and 2) a controller design model.

The measurements are in this work coming from modeled lidar systems, from which a wake position is estimated. In the

employed simulation environment (see section 4.1), perfect lidar systems are modeled that provide estimations of the current

wake position. This estimation is used by the feedback controller to reject any disturbance if present. The controller model that10

is necessary to design the local feedback controllers is estimated from high-fidelity simulation data using system identification

techniques.

3
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3 Control synthesis

3.1 Control task: Feedforward wake redirection control

3.1.1 Methodology

The feedforward controller contains sets of optimized yaw settings. Each set belongs to a specific atmospheric condition and

contains yaw angles for each wind turbine in the farm. Each set is evaluated by solving an optimization problem that finds the5

optimal yaw angles that maximize the power yield of the farm given specific atmospheric conditions. A steady-state (surrogate)

wake model is employed in the optimization to obtain the yaw angles.

3.1.2 Surrogate wind farm model

In this work, the state-of-the-art “FLOw Redirection and Induction in Steady-state (FLORIS)” model is used, which is a

modular, surrogate wind farm model used in the literature for wind farm control, wind farm topology optimization, and AEP10

calculations, among others.

The FLORIS model entails different submodels for single wake deficit, wake summation, and wake deflection due to yaw. In

the remainder, the wake deficit and deflection submodels are largely based on the work of Bastankhah and Porté-Agel (2016),

and multiple wakes are summed by using the sum-square-of-deficits rule from Katic et al. (1986). Finally, the turbine rotors

are characterized using static mappings for the thrust and power coefficient, usually generated using aero-elastic simulations or15

more simply based on actuator disk theory. The top-view of the flow field for a 9-turbine wind farm as predicted by FLORIS

is shown in Fig. 2. More information on the surrogate model and the general concept of wind farm control using steady-state

T1 T2 T3

T4 T5 T6

T7 T8 T9

4

5

6

7

8

Figure 2. The horizontal flow field at the turbine hub height for an example 9-turbine wind farm as predicted by FLORIS

models, including the validation in a high-fidelity simulation environment, can be found in Doekemeijer et al. (2019).

4
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3.1.3 Challenges with feedforward wake redirection control

Since the algorithm largely relies on a surrogate model to determine an optimal set of yaw angles, the model’s accuracy is very

important. Due to the complicated aero- and structural dynamics inside a wind farm, synthesizing such a surrogate model is

not straight forward. Assumptions on flow, simplifications in energy extraction, and assuming symmetry in the wake simplify

the calculations, however, always introduce uncertainties.5

3.2 Control task: Feedback wake redirection control

3.2.1 Methodology

Closed-loop wake redirection control has been introduced first in Raach et al. (2016) further developed in Raach et al. (2017b).

Different control design approaches have been studied in Raach et al. (2017c) and Raach et al. (2017a). So far, the methodology

had two main tasks: ensuring the tracking such that the wake is steered to the desired position and adapting to uncertainties10

and disturbances. In the context of this work, the tasks will be shared, the feedforward controller is responsible to realize the

tracking performance and the feedback controller adapts to various uncertainties and does the small adjustments. Therefore,

the tuning of the feedback controller differs from previous work because of the different requirements and responsibilities of

the controllers.

In this paper, feedback controllers are added to the framework in order to account for undesired wake position deviations. In15

a perfect setup, wake positions correspond exactly to the optimized yaw settings and hence result in maximum energy yield.

These ideal wake positions are referred to as demanded wake positions (see Fig. 1). However, due to for example disturbances,

the real wake positions can deviate from the optimal ones and consequently no maximum power production can be ensured.

The feedback controller receives wake position deviations (i.e., the difference between demanded and estimated wake position)

and evaluates yaw angle deviations accordingly such that the difference between demanded and estimated wake position will20

be steered to zero. These yaw angle deviations are added to the yaw settings from the feedforward controller, as can be seen in

Fig. 1. The design of a feedback controller employs a dynamical model. This model is obtained by running experiments in the

simulation model (see section 4.1) and using model identification techniques.

3.2.2 Wake position estimation

Since the feedback controller directly relies on a correct estimate of the wake position, the wake position estimation is a crucial25

part. A downwind facing lidar system is assumed at each wind turbine to measure the wind speed in the wake of the wind

turbine. It is assumed that the lidar system can measure the wind speed at a distance of 3 D downstream of the wind turbine.

Previous work has shown the feasibility of this assumption, however, challenges remain in realizing it in the field, see Raach

et al. (2017b); Fleming et al. (2017a); Annoni et al. (2018).

In this work, a pattern fitting wind field reconstruction methodology is used which assumes a specific shape of the wake. For30

the wake in a distance of 3 D downwind of a wind turbine it is assumed that the wake can be described as a sum of Gaussian

5
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functions. The basis function

Λj(yj) = p1,j exp(
−(yj − p2,j)2

(2.p3,j).2
(1)

is used with y the position vector and the three free parameters p1,j . . .p3,j which describe the wake deficit, the width of the

wake and the y offset of the wake.

For the estimation a sum of several basis functions are combined to5

Ψ =
∑

j

Λj(yj), (2)

which gives more flexibility in estimating the wake. Furthermore, this assumption also enables to detect overlapping wakes.

The resulting wake position is obtained by the weighted mean position of all N considered basis functions

yres =
1

N

N∑

j=1

p1,j∑
q p1,q

yj (3)

In the estimation step the lidar measurements are used and fitted to the assumed wake pattern as described in detail in Raach10

et al. (2017b). Because of the layout a maximum of two overlapping wakes may appear. Furthermore the influence of the wake

of a wind turbine at a distance of 10 D can be neglected. Therefore the choice of two basis functions (N = 2) is valid because

the wake is measured far downstream and not directly behind the turbine where the shape is not Gaussian. At controller sample

time the free parameters are estimated by fitting the measurement data to the wake pattern.

To realize the pattern fitting, the lidar measurement principle needs to be included in the fitting. A lidar remotely measures15

the wind speed at a defined measurement point by evaluating the back-scattered laser light. However, the measurement principle

is a volume averaging around the desired measurement point. The assumption of point measurements is made for describing

the measure equation for the pattern fitting. Thus, the lidar measurement at point [xi, yi zi] can be written as

vlos,i =
1

fi
(xiui + yivi + ziwi) (4)

with the three dimensional flow vector [ui, viwi] at the measurement point and the focal length fi =
√
x2i + y2i + z2i . The wind20

field model for the wake tracking is defined with the wake pattern of Eq. (2) to




u

v

w



i

=




Ψ

0

0


 . (5)
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Figure 3. An example wake fit to the lidar measurement data using the wake pattern function of Eq. (2) and the wake fitting methods of
described in Eq. (6)

.

Hence, the wake tracking is realized by finding the best parameter representation of the following minimization problem

min




(vlos,1− vlos,measured,1)2

...

(vlos,m− vlos,measured,m)2


 (6)

withm lidar measurements vlos,measured. Figure 3 visualizes the fitting of measurement data at hub height at a downwind distance

of 3D downwind of the wind turbine. This results in a continuously updated wake position estimation signal which is used in

the controller to calculate the desired yaw actions.5

The wake tracking method is then applied to all turbines in the case study, however, with constant inflow conditions. In order

to get a better understanding of the wakes and the wake tracking a snapshots of all wind turbine wakes and the estimations

ar presented. Furthermore, the yaw angles are plotted which are applied in a feedforward appraoch. The results of the wake

tracking are later used in the model identification procedure to obtain controller design models. Figure 4 presents the flow

measurements at several downwind distances and the obtained wake position estimation result. With the previously described10

precursor the experiment of an open loop step response is repeated. Lidar wake tracking gives an interesting insight in the wake

dynamics and the redirection of it at the turbulent case. Figure 5 presents the result of the wake tracking of the turbulent case

of the step response simuation. The signal is also plotted being filtered with a phase free filter to visualize the redirection.

3.2.3 Feedback controller design

As previously described, the feedback controller in the combined feedforward-feedback setup mainly has the task to adapt to15

disturbances and model uncertainties. The feedforward controller is responsible for the main proposition of the yaw command

and the feedback controller only rejects disturbances and uncertainties. This approach is also known as the 2 DOF controller

7
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Figure 4. Snapshot of an open-loop experiment in SOWFA, where different yaw setpoints are applied to the first row of the 3×3 wind farm
layout. The wake is measured at different downwind distances and estimated using the presented wake tracking approach at each distance.
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Figure 5. Raw time result of the wake tracking of turbine 1 at a position of 2.5 D downstream with the turbulent atmospheric conditions of
the example case. To evaluate the wake redirection the result is filtered with a phase free filter. This shows the feasibility to estimate the wake
position in more realistic turbulent conditions.
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design approach. It allows the the feedback controller to be tuned much softer and robust than in the feedback only case where

the feedback is also responsible to guarantee a satisfying tracking performance.

Previous work has investigated different controller synthesizes, like an internal model controller, an H∞controller, and a

robust H∞controller. Those controller have resulted in higher order controllers due to the used synthesis methodologies. In

this work, the methodology of structuredH∞controller design is applied, which is implemented in the Robust Control Toolbox5

of Matlab, see Apkarian and Noll (2006).

Important performance criteria to design and evaluate the feedback controller are the output sensitivity S , the complementary

sensitivity T and the controller sensitivity U . They quantify the influence of the disturbances or references to the output or

the controller. With a given plant model G and the controller K, the performance criteria can be evaluated. More precisely,

according to Skogestad and Postlethwaite (2005), the sensitivity S gives the closed-loop transfer function from an output10

disturbance to the system output, the complementary sensitivity T is the closed-loop transfer function from the reference to the

output and is further the complement of S, and − U is the transfer function from the disturbance to the control signal. Thus,

S =
1

1 +GK
, (7)

T =
GK

1 +GK
, and (8)

U =
K

1 +GK
. (9)15

The fixed structureH∞controller synthesis uses the performance weights and a given control structureK, e.g. a proportional

controller, and solves the mixed sensitivity problem

min
K

κ

s.t.

∥∥∥∥∥∥∥∥

WSS
WT T
WUU

∥∥∥∥∥∥∥∥
∞

≤ κ, (10)

where

∥∥∥∥∥∥∥∥

WSS
WT T
WUU

∥∥∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥∥∥

WS(1 +GK)−1

WTGK(1 +GK)−1

WUK(1 +GK)−1

∥∥∥∥∥∥∥∥
∞

, (11)20

with κ the bound on the H∞norm and the weights WS(s), WT (s), and WU (s), respectively. for the given control structure

K and its free parameter (e.g. the proportional gain). For the closed-loop wake redirection control, a proportional-integral

controller structure (PI controller) is used because the integral part adjusts well to model uncertainties and guarantees a zero

offset. As mentioned, in contrast to previous feedback-only controllers, for the combined feedback-feedforward approach the

9
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Figure 6. The obtained controller design model that was derived from step responses of SOWFA.

feedback controller can be synthesized with a smaller bandwidth. In the following the design process is described. First, a

controller design model is derived, then the controller is synthesized using the fixed-structure approach.

The controller design model is derived from open-loop experiments. Different yaw setpoints are set and the flow data is

measured with the lidar wake position estimation. Figure 4 shows a snapshot of the wake tracking for the model identification.

From theses results a transfer function is estimated that gives the same step response than the estimated wake position from the5

simulation data. Figure 6 shows the Bode plot of the obtained controller design model.

As a next step, the fixed structure controller synthesis is formed by the performance weightsWS(s), andWU (s), respectively,

as follows:

WS(s) =
s/M +ωB

s+ωBA
(12)

WU (s) =
R2(s2 + 1/2

√
2ωds+ω2

d)

10(s2 + 25
√

2ωds+ (Rωd)2)
(13)10

with wB = 0.02, A= 10−7, M = 2, ωd = 0.005, and R= 20. This setup ensures a good disturbance rejection for low fre-

quencies and no controller action on high frequencies. In the following section, the controller and its resulting sensitivities are

analyzed.

10
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Figure 7. The derived fixed structure PI controller is analyzed in the Bode plot.

3.2.4 Controller analysis

The derived controller is shown in the Bode plot in Figure 7. The controller has the following parameter,Kp = 3.94 ·10−4, and

Ki = 0.0014. The performance analysis of the controller is shown in Figure 8, the sensitivity S and the controller sensitivity

U . The sensitivity shows a good damping for low frequencies which results in an offset free control. No static error remains

after any disturbance. The controller sensitivity shows a good roll-off for high frequencies which means that higher frequency5

movement of the wake is not controlled. Due to the measurement distance downwind of the wind turbine it is needed to adjust

the controller in such a way to prevent it from additional control action at higher frequencies, like wake meandering.

4 Example case: 3x3 wind farm

4.1 Simulation environment

The high-fidelity wind farm model Simulator fOr Wind Farm Applications (SOWFA), developed by the National Renewable10

Energy Laboratory, is used to test the proposed control strategy in a wind farm with a regular 3× 3 layout. Figure 9 gives an

overview on the spacing and the wind farm layout as well as the inflow wind direction.

SOWFA is based on large-eddy scale simulation techniques and solves the three-dimensional, unsteady, incompressible

Navier-Stokes equations over a finite temporal and spatial mesh, accounting for the Coriolis forces. In SOWFA, the larger

scale dynamics are resolved directly while turbulent structures smaller than the spatial discretization are approximated using a15

subgrid-scale model Churchfield et al. (2012).

11
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Figure 8. Controller analysis: The controller sensitivity and the input sensitivity is analyzed in the two plots. In black, the boundaries of the
performance weights are plotted.
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wind direction

Figure 9. The case study wind farm layout, a regular 3× 3 wind farm layout with a downwind spacing of 7 D and a lateral spacing of 5 D.

The turbine rotor is modeled using an actuator line representation as derived from Sørensen et al. (2002). This model employs

a technique in which body forces are distributed along lines representing the blades of the wind turbine. The influence of the

rotating blades on the flow field is computed by calculating the local angle of attack and then determining the local forces

using tabulated airfoil data. The local forces are then distributed over the blade using a Gaussian filter. Since the ALM is

employed, no detailed study regarding fatigue loading can be performed as could be done when employing a turbine model5
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Table 1. SOWFA case study specifications.

Variable Value Variable Value

Domain size 5× 5× 1km Turbine spacing 5D lateral, 7D downwind
Turbine type DTU 10 MW Cell size outer regions 10m
Ambient wind speed 7.7m/s Atmospheric turbulence 6%
Number of turbines 9

such as FAST Jonkman and Buhl Jr. (2005). Instead, this work is focused on the control of the flow in a wind farm and thus

detailed information on turbines fatigue is not necessary at this stage of the research.

4.2 Demonstration study: atmospheric conditions

In order to cover the turbulent flow for the total domain and the inflow of the SOWFA model a proper precursor needs to be

run and used. In this work, a precursor, defined and generated in the CL-Windcon project is used, see CL-Windcon (2019).5

The accuracy of the results depend on how realistic the inflow and flow-wind turbine interaction are modeled. Therefore,

the inflow and initial flow conditions are generated with the same high-fidelity model. To generate a realistic atmospheric

condition, the ground surface is set to a specific roughness length. In our case the roughness is set to z0 = 0.01m. The mean

wind speed at hub-height is 7.7m/s with a turbulence intensity Ti= 6%. The precursor domain consist of a box of lx×ly×lz =

5×5×1km. All lateral boundaries are set to periodic boundary conditions. This means, the outlet flow is recycled to the inflow.10

For more details, we refer to the deliverable D1.4 of the CL-Windcon project, which is publicly available, see CL-Windcon

Deliverable D1.4 (2018). After a simulation time of 1000 s, a cross-wind of 1 m/s is added at the west boundary to disturb the

wake redirection. This modification of the inflow conditions helps to highlight the benefit of the feedback wake redirection

controllers.x

The precursor is used as an initial flow field for the 9-turbine case study used throughout this work. Table 1 provides detailed15

information on the 9-turbine simulation case that is used throughout this work to demonstrate the effectiveness of the proposed

control strategy.

4.2.1 Optimal yaw angles for the test scenario

The complete feedforward-feedback solution will be tested on a 9-turbine wind farm in high-fidelity simulation in Section 4.

As the mean atmospheric conditions are constant, the feedforward control signals can be calculated a priori. Specifically, the20

9-turbine wind farm is depicted in Fig. 2, in which the freestream wind speed is 8.0 m/s, the freestream turbulence intensity is

6%, and the mean wind direction is along the x-axis. For simplicity, a brute force approach is leveraged to find the yaw angles
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that maximize the power production of the wind farm, leading to

γFLORIS =−




30◦ 25◦ 0◦

30◦ 25◦ 0◦

30◦ 25◦ 0◦


 .

The yaw angles between the three columns are identical due to symmetry in the wind farm and in the surrogate model.

Furthermore, the wake center positions, a quantity directly related to the effectiveness of wake steering, at 3D downstream of

each turbine are5

∆ywake =




−43.2m −44.4m −11.7m

−43.2m −44.4m −11.7m

−43.2m −44.4m −11.7m


 .

In case of a model mismatch, the predicted wake center locations ∆ywake will deviate from the true locations. In the case that

the deflection is too small, then more power may be extracted at the downstream turbine by increasing the yaw angle of the

upstream turbine. Similarly, if the wake displacement is larger than necessary, then the upstream turbine may capture more

power by decreasing the yaw angle at a negligible loss in power of the downstream turbine.10

4.3 The simulation cases

In the following three different control cases are compared: a baseline case (BL), a feedforward case (FF), and a feedfor-

ward+feedback case (FF+FB).

In the baseline case all wind turbines are aligned with the main wind direction and now yaw actuation is assumed. This case

represents the current operation of a wind farm.15

In the feedforward case, optimal yaw angles are computed with FLORIS as described in section 3.1.

In the feedforward+feedback case at each wind turbine the wake position is controlled with the feedback controller and

supported by the feedforward controller. A major question in this case is the choice of desired wake position information

for each wind turbine. In our case, first, open-loop simulations with the optimized yaw angles using the FLORIS model are

conducted. The wake positions are analyzed and the steady state was then used as commanded information for the feedback20

controller. In reality a combination of a pre-study with a steady state model like FLORIS or a high fidelity model like SOWFA

may give initial values which will be adapted after in a tuning phase with measurement data.

4.4 Results

The simulations are initialized with the evolved precursor flow field and the specified inflow conditions. Figure 10 compares

the total power output of the wind farm with the three controller cases. Altogether, the improvements of feedforward and25

feedforward+feedback are visible and a higher power output is reached compared to the baseline case. Due to the adaption
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Figure 10. Comparison of the total wind farm power output: The baseline case, in which the wind turbines are all aligned with the main wind
direction, is compared to the feedforward case, in which the optimized yaw angles of FLORIS are applied, and the feedforward+feedback
case, in which additional feedback controllers are controlling the wake position of each wind turbine.

to the changing inflow condition the feedforward+feedback controller over performs the feedforward and baseline cases. The

reason for that can be seen in Figure 11 where the yaw angles of turbine 1 and turbine 4 of the different cases are compared.

The feedback controllers in case 3 adapt to the changing wind conditions and avoid wind turbine wake interactions. The impact

can be seen in Table 2 where the total energy yield with respect to the baseline case is analyzed.
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Figure 11. Analysis of the yaw angles of wind turbine, which is located in the first row, and wind turbine 4 being in the second row. In the
baseline case, the yaw angle is constantly 0 deg, in the feedforward case, a static yaw angle is applied, and in the feedforward+feedback case,
the yaw angle is adjusted by the feedback controller.
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Table 2. A comparison between the total power output of the example case. The table presents the total produced energy of the wind farm
with the different control concepts baseline (BL), feedforward (FF), and feedforward+feedback (FF+FB). Furthermore, the power increase
with respect to the baseline case is analyzed.

Case Total Energy [MWh] Increase [%]
BL 12.4 -
FF 13.8 11.2
FF+FB 14.5 16.9

5 Conclusions

This paper has presented a combined feedforward-feedback wake redirection control approach. The framework and control ap-

proach has been presented in detail. Afterwards, it was adapted to a demonstration case in which a 3×3 wind farm layout is in-

vestigated. Three controller cases are compared to each other: a baseline case, a feedforward case, and a feedforward+feedback

case. The feedforward yaw angles are computed using the surrogate model based on FLORIS. For the feedback controller a5

proportional-integral (PI) controller is investigated and designed using a structuredH∞controller synthesis approach.

The control cases are applied to the wind farm using neutral atmospheric conditions and a mean wind speed of 7.7 m/s which

is in the partial load region of the wind turbines. Additionally, a cross-wind is imposed to demonstrate the adaptivity of the

feedback controller. The combined feedforward+feedback controller adapts to the disturbance. This means the feedback con-

trollers maintain the desired wake and steer the wake to it by adjusting the yaw. Therefore, the enforced wake impingement are10

mitigated. This results in a higher power output compared to baseline and feedforward only case. Altogether, both controllers,

the feedforward and feedforward+feedback, increase the total power yield of the demonstration case compared to the baseline

simulation case.

As a next step, changing inflow angles need to be taken into account, as well as changing atmospheric conditions. It further

needs to be studied, how these additional changes impact the wake redirection and the feedback controller. Another important15

question is the choice of wake position set points of the wind turbines in the farm. This point needs further investigation,

especially the different calculation methodologies need to be studied.

Code availability. The FLORIS model is publicly available at Github2.
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Campagnolo, F., Petrović, V., Schreiber, J., Nanos, E. M., Croce, A., and Bottasso, C. L.: Wind tunnel testing of a closed-loop wake deflection

controller for wind farm power maximization, 753, 032 006, 2016.

Churchfield, M., Lee, S., and Moriarty, P.: Overview of the Simulator for Offshore Wind Farm Application (SOWFA), 2012.

Ciri, U., Rotea, M., and Leonardi, S.: Model-free Control of Wind Farms. A comparative study between individual and coordinated extremum15

seeking, Renewable Energy, vol. 113, pp. 1033-45, 2017.

CL-Windcon, H.: H2020 CL-Windcon project website, www.clwindcon.eu, 2019.

CL-Windcon Deliverable D1.4: Deliverable D1.4 - Classification of control-oriented models for wind farm control appli-

cations, Tech. rep., H2020 project CL-Windcon, http://www.clwindcon.eu/wp-content/uploads/2019/04/CL-Windcon-D1.

4-Classification-control-oriented-models.pdf, 2018.20

Clayton, B. and Filby, P.: Measured effects of oblique flows and change in blade pitch angle on performance and wake development of model

wind turbines, BWEA Wind Energy Conference, 1982.

Doekemeijer, B. M., Fleming, P. A., and van Wingerden, J. W.: A tutorial on the synthesis and validation of a closed-loop wind farm controller

using a steady-state surrogate model, in: Proceedings of the American Control Conference (ACC), Philadelphia, USA, in review, 2019.

Fleming, P. A., Gebraad, P. M. O., Lee, S., van Wingerden, J.-W., Johnson, K., Churchfield, M., Michalakes, J., Spalart, P., and Moriarty, P.:25

Evaluating techniques for redirecting turbine wakes using SOWFA, Renewable Energy, 70, 211–218, 2014.

Fleming, P. A., Annoni, J., Scholbrock, A., Quon, E., Dana, S., Schreck, S., Raach, S., Haizmann, F., and Schlipf, D.: Full-scale field test of

wake steering, in: Journal of Physics: Conference Series, vol. 854, p. 012013, IOP Publishing, 2017a.

Fleming, P. A., Annoni, J., Shah, J. J., Wang, L., Ananthan, S., Zhang, Z., Hutchings, K., Wang, P., Chen, W., and Chen, L.: Field test of

wake steering at an offshore wind farm, Wind Energy Science, 2, 229–239, https://doi.org/10.5194/wes-2-229-2017, 2017b.30

Gebraad, P. M. O., Teeuwisse, F. W., van Wingerden, J.-W., Fleming, P. A., Ruben, S. D., Marden, J. R., and Pao, L. Y.: Wind plant

power optimization through yaw control using a parametric model for wake effects - a CFD simulation study, Wind Energy, 19, 95–114,

https://doi.org/10.1822/we, 2016.

Grant, I., Parkin, P., and Wang, X.: Optical vortex tracking studies of a horizontal axis wind turbine in yaw using laser-sheet, flow visualisa-

tion, Experiments in Fluids, vol. 23, pp. 513-519, 1997.35

Howland, M. F., Bossuyt, J., Martinez-Tossas, L. A., Meyers, J., and Meneveau, C.: Wake structure in actuator disk models of wind turbines

in yaw under uniform inflow conditions, Journal of Renewable Sustainable Energy, 2016.

17

D2.5 - Integrated wind farm controllers public

Copyright CL-Windcon Contract No. 727477 Page 104



Jiménez, Á., Crespo, A., and Migoya, E.: Application of a LES technique to characterize the wake deflection of a wind turbine in yaw, Wind

Energy, 13, 559–572, 2010.

Jonkman, J. and Buhl Jr., M.: FAST User’s Guide, Tech. Rep. EL-500-38230, National Renewable Energy Laboratory, Golden (Colorado),

USA, 2005.

Katic, I., Højstrup, J., and Jensen, N. O.: A simple model for cluster efficiency, in: Proceedings of the European Wind Energy Association5

Conference and Exhibition, pp. 407–410, 1986.

Munters, W. and Meyers, J.: Towards practical dynamic induction control of wind farms: analysis of optimally controlled wind-farm boundary

layers and sinusoidal induction control of first-row turbines, Wind Energy Science, 2018.

Quick, J., Annoni, J., King, R., Dykes, K., Fleming, P. A., and Ning, A.: Optimization Under Uncertainty for Wake Steering Strategies,

Journal of Physics: Conference Series, 19, 95–114, https://doi.org/10.1822/we, 2017.10

Raach, S., Schlipf, D., Borisade, F., and Cheng, P. W.: Wake redirecting using feedback control to improve the power output of wind farms,

in: Proceedings of the American Control Conference (ACC), Boston, USA, 2016.

Raach, S., Boersma, S., van Wingerden, J.-W., Schlipf, D., and Cheng, P. W.: Robust lidar-based closed-loop wake redirection for wind

farm control, in: Proceedings of the 20th World Congress of the International Federation of Automatic Control (IFAC), Toulouse, France,

2017a.15

Raach, S., Schlipf, D., and Cheng, P. W.: Lidar-based wake tracking for closed-loop wind farm control, Wind Energy Science, 2, 257–267,

https://doi.org/10.5194/wes-2-257-2017, 2017b.

Raach, S., van Wingerden, J.-W., Boersma, S., Schlipf, D., and Cheng, P. W.: H∞ controller design for closed-loop wake redirection, in:

Proceedings of the American Control Conference (ACC), pp. 703–708, Seattle, USA, 2017c.

Raach, S., Boersma, S., Doekemeijer, B. M., Wingerden, J. W., and Cheng, P. W.: Lidar-based closed-loop wake redirection in high-fidelity20

simulation, Journal of Physics: Conference Series, DOI: 10.1088/1742-6596/1037/3/032016, 2018.

Skogestad, S. and Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design, John Wiley & Sons, 2005.

Sørensen, P., Hansen, A. D., AndrÃ©, P., and Rosas, C.: Wind Models for Simulation of Power Fluctuations from Wind Farms, Journal of

Wind Engineering and Industrial Aerodynamics, 90, 1381–1402, 2002.

Steinbuch, M., de Boer, W. W., Bosgra, O. H., Peters, S. A. W. M., and Ploeg, J.: Optimal control of wind power plants, Journal of Wind25

Engineering and Industrial Aerodynamics, vol 27(1-3), pp. 237-246, 1988.

Vollmer, L., Steinfeld, G., Heinemann, D., and Kühn, M.: Estimating the wake deflection downstream of a wind turbine in different atmo-

spheric stabilities: An LES study, Wind Energy Science, vol. 1, pp. 129-141, 2016.

18

D2.5 - Integrated wind farm controllers public

Copyright CL-Windcon Contract No. 727477 Page 105



D2.5 - Integrated wind farm controllers public

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

−10

0

10

Yaw [de
g]

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

−20

0

20

time [s]

wak
e

cen
ter [m]

Figure 14. Model identification steps to obtain a controller design model with
SOWFA. The first plot shows the yaw angle, the second plot gives the esti-

mated wake position at a downwind distance of 3 times the rotor diameter (3D).

5.3 Control design

The paper just briefly discusses the controller design procedure of the feedback controller. Here,
more details are shown. Especially the challenges of the 2DOF controller design (combined feedback-
feedforward control) are highlighted. The controller design section is structured as following: First,
the controller design model is derived. Second, design procedures are stated and compared to each
other.
5.3.1 Control design model

For the feedforward part, the FLORIS model is used, which has been used in various feedforward
wake redirection investigations, see [32, 3, 13]. It has been tuned to match the DTU 10MW wind
turbine wake and overall flow behavior in SOWFA.
For the feedback controller design a suitable dynamic model that describes the dynamic response
of the wake position to a yaw actuation is needed. There has been different approaches how this
can be obtained, [51] usedmodel assumptions and an identification technique to obtain single-input
single-output models that describe the relationship. In [52, 49] fixed structure model identification
techniques are used to obtain themodels. Here, the latter is also used. A predefinedmodel structure
is used. Step responses are performed in SOWFA to assess the input output behavior of the wind
turbine and the resulting wake structure, see Figure 14.
For different setpoints the simulations are performed and the resulting dynamic single-input single-
output models are derived. Figure 15 is showing the obtained models in a Bode plot. They mainly
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Figure 15. Bode plot

differ in dynamics and in static gain which result from the different responses at different yaw set-
point. They can be combined into an average model, shown in Figure 16 by using

|g(iωj)| =
1

m

m∑

l=1

|Gl(iωj)|, (5.1)

∠g(iωj) =
1

m

m∑

l=1

∠Gl(iωj), (5.2)

where ∠Gl(iωj) are the phase of each model and ∠g(iωj) describes the average phase of G(s) at
frequencyωj . In this analysism = 5 results from themodels of Figure 15 which are considered in the
calculation. |g(iωj)| gives the average amplitude of G(s) at frequency ωj . Thus, the average model
can be written as

g(iωj) = |g(iωj)|i∠g(iωj). (5.3)

5.3.2 Control synthesis

The feedforward controller is synthesized by optimizing the yaw angles of the wind farm for specific
atmospheric conditions to maximize the total power output of the wind farm. This has yield a set of
yaw angles for the different conditions that are applied in simulation.
For the feedback controller synthesis, there have been exploited several methodologies of deriving
controllers for closed-loop wake redirection; an internal model controller in [51], an H∞ controller
in [52], and a robust controller in [49]. Here, a comparison ofH∞ and robust controller as well as a
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Figure 16. Averaged model from the model identification.

different technique, the fixed structure controller synthesis is used. The idea of the fixed structure
controller design is to pre-define the controller structure and parametrize the controller with given
design bounds. The same design bounds on sensitivity, and controller sensitivity are applied for all
three designs and are stated in the paper in Eq. (12) and (13). The resulting controllers are shown in
Figure 17. The design bounds are shown in Figure 18 as well as the obtained controller performances
are analyzed. The fixed structure PI controller and the robust controller obtain almost the same
controller sensitivity whereas the H∞ and the fixed structure PI controller reach similar sensitivity
results. Altogether, all controller have high damping in the sensitivity to guarantee an offset free
control performance (integral behavior) and roll-off at high frequencies in the controller sensitivity.
5.4 Controller analysis

The feedforward controller doesn’t need a specific performance analysis. However, the combination
between feedforward and feedback controller is discussed later in the section.
For the feeddback controller, a first analysis of the controllers have been given in Figure 17 and Figure
18. As a next step, the controllers will be compared in time domain with closed-loop step responses.
A nominal environment is assumed first, later, an output disturbance is applied. This investigates
the controller sensitivity and verifies that the controller is not acting at high frequencies. Figure 19 is
presenting the inputs (yaw angle) and the outputs (wake center) of the step responses in the nominal
and in the disturbed condition.
A challenge in the design of the combined-feedback-feedforward controller is the selection of the
desired wake position for the feedback controller. Due to the model mismatch between high-fidelity
simulation, which is considered to represent the reality, and the reduced order wake model FLORIS,
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Figure 17. The different controllers synthesized using the obtained controller design models. A H∞
controller, a fixed structure PI controller and a robust controller taking all models into account.
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controller, a fixed structure PI controller and a robust controller taking all models into account.
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Figure 19. Step responses of the closed-loop controller. In the disturbed
case, output disturbances are applied which can be seen in the second
plot. All controllers perform well and achieve an error-free final result.

it is not obvious how setpoints are calculated. The following options are available: 1) take the wake
positions predicted by FLORIS, 2) perform steady state simulations with SOWFA and calculate the
wake positions from the FLOW field, 3) take FLORIS predicted wake position as initial values and
derive an adaption algorithm, that uses the information and adapts the setpoints to the real values.
In our case, the second option was chosen since it gives less uncertainty at the beginning and further
provided suitable setpoints for the demonstration case in the study.
5.5 Conclusions and Discussion

This chapter has described the general concept of combined feedback-feedforward wake redirection
control. The concept develops further the idea of using lidar flow measurements in a wind farm to
enable a closed-loop wake redirection. The combination with the feedforward action, calculated
by the FLORIS model, improves the control performance in such a way that the controller can be
designed less aggressive and thus, avoiding to much control action by the feedback. However, the
main advantages of the feedback controller remain, which are the adaptivity to model uncertainties
and the possibility to react on disturbances.
Details on the overall implementation and the controller design in special are given and different
strategies have been discussed. Overall the fixed structure PI controller has been chosen for the
combined setup because of its simplicity and the control performance which is comparable to the
other controllers.
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The setup has been tested in the SOWFA environment and has shown its ability to react on a cross
wind disturbance. This is a first verification that the combined setup is feasible andmight improve the
single concepts. A deeper investigation for multiple conditions is needed to study its overall benefit.
Furthermore, as mentioned in the controller analysis section, the setpoint generation procedure
might be improved with different techniques. however, it remains a challenge in this methodology.
Combined feedback-feedforwardwake redirection controlmight be the next level inwake redirection
control because of using additional information through the lidar sensor(s) the overall performance
can be improved. The concept offers new possibilities in controlling the flow in a wind farm because
local disturbances still might lead to suboptimal flow conditions. The feedforward controller will steer
the main portion and the local control only acts in a defined range around the feedforward value.
Overall this can be step towards smarter wind farms and an optimized wind farm operation.
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6 DYNAMIC INTEGRATION OF FEED-FORWARD INDUCTION CONTROL

This chapter describes the work carried out by CENER related to the integration of wind farm con-
trollers. The progress is based on previous contributions, basically related to wind farm optimization
bymeans of depowering configurations (induction control), taking into account the power of thewind
farm (calculatedwith FLORIS) and the flapwise Damage Equivalent Load (DEL) at the blade root, which
is estimated with CENER’s methodology developed in [55]. For this dynamic integration, adaption to
varying ambient wind conditions is also provided. That is, the optimized wind farm configuration se-
lected by the supercontroller changes in accordance to the free-streamwind conditions, in particular
ambient mean wind speed and TI in the present work.
Some additional developments have been necessary at different levels to reach the objective of the
dynamic integration of the wind farm controller, in this case, into a medium-fidelity farm simulation
code (FAST.Farm):

• Estimation of environmental conditions of thewind farm, based onmeasurable data fromwind
turbines

• Calculation of optimum depowering settings depending on the environmental conditions, us-
ing FLORIS and taking into account power and loads

• Gain of knowledge on FAST.Farm supercontroller
The final result of this work is the integration of the optimized wind farm solutions based on FLORIS
and the estimation of DEL (flapwise bending moment at the blade root) in the FAST.Farm simula-
tions making use of the supercontroller. The current example is focused on the flapwise bending
moment at the blade root, but the methodology would be similar for other components and loads
using consistent modeling.
The estimator of free-stream ambient conditions requires information from the dynamic results of
FAST.Farm in order to get the environmental conditions of the wind farm. Taking into account the
inflow, the appropriate derating settings are selected from the database precalculated by the opti-
mizer. The supercontroller implemented in FAST.Farm demands the derating settings to the wind
turbines in the next period.
6.1 Estimation of environmental conditions

6.1.1 Introduction

The need to develop an estimator of ambient conditions is imposed by the definition of optimization
cases, which are based on FLORIS simulations. Apart from the wind farm lay-out and the Cp and
Ct curves, the wake modelling code needs information of the environmental conditions of the wind
farm: wind speed, turbulence intensity (TI) and wind direction.
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Figure 20. Methodology of ambient wind conditions estimation

A tool has been developed in Python to generate the information that is required from measurable
data of the wind turbines. This first approach only needs information from the upstream wind tur-
bine (Figure 20), because the rest of the wind turbines are affected by the wake and the estimation
of the free-wake conditions from their data would probably provide less accurate results with more
complex calculations. In fact, changes in behaviour of the upstream wind turbine related to environ-
mental conditions are observed with a delay in the rest of downstream turbines. Therefore, the fact
of using the data of the first turbine where the changes in the wind are observed, allows to act in
advance.
The data from the wind turbine used for the estimation of the environmental conditions includes:
power, rotor speed, blade pitch angle and torque. Average values and standard deviations are re-
quired, which are typically included in SCADA data. In order to carry out the wind farm control, 5-min
to 10-min data is enough. Usually in SCADA systems the data is stored in 10-min files. However, in this
example 5-min data will be taken in order to reduce the computational time and verify the method-
ology in a shorter simulation (4000 s) with several actuations of the supercontroller and variations in
the wind. The mean values in the selected time frame are necessary for the estimation of the wind
speed (Figure 22), while the standard deviations are used for the estimation of the TI (Figure 25).
In addition, a database of average values (power, rotor speed, blade pitch angle and torque) from
precalculated simulations will be an input for the estimation tool, including results from different
combinations of wind speed, TI, yaw angles and depowering settings. To get this database, numer-
ous simulations were run, covering a range of wind speeds from 4m/s to 24m/s, TI from 5% to 20%,
yaw angle from −30° to 30° and depowering configuration from 50% to 100%. All simulations were
calculated by CENER for deliverable D2.3 [55]. Now the whole database contains all useful turbine
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Figure 21. Power (W ) distributions for all combinations of wind ve-
locities and yaw angles (for different derating settings, TI= 8%)

values (power, rotor speed, blade pitch angle and torque) for every wind speed/TI/yaw angle/depow-
ering configuration. A graphic representation of the database for mean power results can be seen
in Figure 21, without combination of TI, presenting only values for TI = 8%.
Once the entire database is available, the values for the unknown variables, ambient wind speed
and TI, must be found based on yaw angle and depowering data. To do so, the database must be
filtered, that is, all the rows are deleted, except for the ones with the yaw angle and depowering data
measured in the current state in the upstreamwind turbine. Thus, the resulting reduced database for
the estimation contains results of mean values and standard deviations for different combinations
of wind speed and TI. Then, the turbine data is used in order to find the appropriate value for wind
speed and TI. In the following subsections it is explained how this procedure is carried out for each
variable of interest.
6.1.2 Ambient wind speed estimation

The first step is to find thewind speed (one for every TI level) forwhich the simulationmean values are
similar to those measured in the SCADA/simulator (Figures 22 and 23). The estimation for each level
of TI (marked with a X in Figure 24) is averaged because in general the results are very approximate,
as can be observed in Figures 23 and 24. There are however some regions where there may be
abrupt changes and the level of TI may have a significant influence. In the figures, the value of wind
speed averaged among TIs is presentedwith a purple dot in the estimation coming from each turbine
variable.
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Figure 22. Methodology of ambient wind speed estimation

An estimation of the wind speed is obtained from each available variable (power, rotor speed, pitch
angle and torque). After the extraction of the estimations for every variable, a quality verification is
included in order to only select the valid approaches for the selection of the final wind speed. There
are regions where the average values of one variable are not dependent only on the wind speed, so
these estimations must be discarded. In the case of wind speed, Figure 23c (pitch angle) estimation
is not correct, because for this region there is no one-to-one relationship with the wind speed.
The resulting estimated ambient wind speed is calculated as the average among the valid estimates.
6.1.3 TI estimation

At this point, the mean ambient wind speed is known. Hence now the ambient TI must be found.
In general, the wind speed estimation value will have some decimals. Nevertheless, in the database
there are only integer values for thewind speed. Therefore, the database is filtered again leaving only
the next (upper velocity) and previous (lower velocity) integers to the estimated value. For example,
if the estimated wind speed is 9.3m/s, a wind speed of 10m/s is taken as upper velocity and a wind
speed of 9m/s as lower velocity.
The exercise for the ambient TI is similar to the one carried out in subsection 6.1.2. The first step
is to find the TI (one for the upper velocity and one for the lower velocity) for which the simulation
standard deviation values are similar to those measured in the SCADA/simulator (Figures 25 and
26). The estimation for both upper and lower wind speeds is interpolated by linear approximation in
order to obtain the correspondent value for the estimated wind speed.
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Figure 23. Estimation of mean ambient wind speed
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(b) Rotor speed estimation
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Figure 24. Estimation of mean ambient wind speed (zoom in on variables with valid estimates)
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Figure 25. Methodology of ambient TI estimation

An estimation of the TI is obtained for every available variable (power, rotor speed, pitch angle and
torque). A quality verification is included in order to select only the valid approaches for the selection
of the final TI. There are regions where the standard deviations of one variable are dependent not
only on the TI at the estimated wind speed, so these estimations must be discarded. In this case,
Figure 26c (pitch angle) estimation is not correct, because there is no one-to-one relationship with
the TI at the estimated wind speed.
The resulting estimated ambient TI is calculated as the average among the valid estimates.
6.2 Calculation of optimum derating configurations

The selection of the optimum configurations for different ambient conditions is calculated off-line,
using the optimizer code developed by CENER. This optimizer is based on genetic algorithms and the
objective function is a compromise solution between loads and power [55]. It includes estimations of
the blade root flapwise bendingmoment DEL. The wakemodel is the Porté-Agel [10] implementation
in FLORIS, including small improvements developed by CENER, detailed in deliverable D2.3 [55], in
terms of power estimation using the new proposed grid, inputs of Cp and Ct, and the estimation of
Damage Equivalent Loads.
A database is generated in order to get useful precalculations for the implementation in FAST.Farm.
Some optimizations are run for different wind speeds and TIs, while the wind direction is established
constant and equal to zero. A more extensive database including the variation of the wind direction
could be obtained, however the computational cost increases considerably and for the current study
it has been discarded.
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Figure 26. Estimation of ambient TI
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6.3 Supercontroller interface

Current practice in wind turbines operation is that each turbine has its own controller optimizing its
performance in terms of energy capture and loading, based only on the available information of its
ownmeasurements. However, turbines interact through their wakes in the flowfled they are sharing.
For this reason it is important to consider how the whole plant should be controlled when wind farm
control algorithms are developed.
In section 6.2, different optimum derating configurations have been chosen for each wind turbine.
In order to communicate this operational modes from the wind farm controller to all individual wind
turbines controllers within the wind farm, it is necessary to create an interface between both types
of commanding elements. In the present work, individual wind turbine controllers are coded in
OpenDiscon format [26], which is compatible with OpenFAST turbine simulation model. Different
strategies were developed in deliverable D2.1 [26] for axial induction control and wake redirection
control. The ’minimal thrust coefficient’ is chosen here to depower individual wind turbines (more
detail in [8]). In this case, input needed in each wind turbine is the ratio of desired vs available power.
This command (one value) is sent from the selector of wind farm optimum derating configurations
within the supercontroller to each wind turbine by a supercontroller interface.
Then, each OpenDiscon changes its blade pitch command and generator torque command. Due to
the fast response of the electrical system, electrical generator torque gets its set point inmilliseconds,
while blade pitch angle has a slower dynamics. This fast actuation on torque produces undesirable
peaks in loads are seen in Figure 36. In damage equivalent loads calculations and for estimation
of ambient wind conditions, these 10-s transients are ignored (subsection 6.5.3). Some proposal to
avoid this problem is given in subsection 6.5.5.
6.4 Integration

The final objective of the individual developments is their integration into the wind farm supercon-
troller, specifically the integration of optimized solutions, based on the FLORIS wake model, into
dynamic simulations with the FAST.Farm medium-fidelity code (Figure 27).
Broadly speaking, the system can be seen as the block diagram of Figure 28. First, the SCADA data
of the first free-stream turbine of each column or row, depending on the wind direction, is taken.
This information is introduced into the environmental conditions estimator (script in Python), which
estimates the ambient wind speed and the TI that reach the first turbine. These two parameters de-
termine the optimal derating configuration for every wind turbine for the next period of time. Finally,
the supercontroller interface (developed in FAST.Farm) applies each depowering to the correspond-
ing wind turbine.
It is worth mentioning here that the wind farm controller would still be a feed-forward open-loop
farm controller. The configuration shown in Figure 28 acts dynamically, by adapting to the varying
ambient conditions, but it does not strictly close the loop feeding back the effect of the control on the
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Figure 27. Methodology for the integration of supercontroller

controlled variables (power and DEL). This means that the dependence on the farm model accuracy
is higher than in a full closed-loop configuration.
An intermediate development has also been included in Section 6.1: the wind condition estimation,
developed by CENER. It is necessary, together with the database of precalculated configurations, for
the selection of the appropriate configuration when the supercontroller acts.
In the current version of the integration, the solutions are calculated off-line and the selection of the
configurations is done by looking for the nearest case in the database of precalculated solutions.
However, for future versions of the control integration, the search for the appropriate configuration
should be done by launching online the optimization, to ensure that the configuration is optimal for
the concrete conditions that are measured. This real-time running optimizer introduces other kind
of challenges that are not discussed in this deliverable.
6.5 Example

An example of this methodology for the integration of the solutions has been carried out, in order to
show it more clearly.
The selected lay-out for this example is the 3x3 lay-out of CL-Windcon, as is shown in Figure 29 [38].
The direction of the wind is fixed to 180° (FLORIS reference system), corresponding to the wind com-
ing from the upper part of the farm, as is shown in Figure 29. The effect of the wakes is relevant for
this orientation in terms of loads and power reduction, being the wake recovery is less evident than
in the 90° orientation. This case has been reduced to the 3 aligned wind turbines because there is
no effect between wind turbines in different columns.
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Figure 28. Farm controller block diagram

Figure 29. 3x3 CL-Windcon Lay-out
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Figure 30. Wind speed input

6.5.1 Wind input

The wind input (at hub height) for the example case has been created using TurbSim2, and the out-
puts have beenmodified in order to get a wind file with a negative pulse (from 12m/s to 8m/s) in the
mean wind speed. The absolute standard deviation for both wind speeds is kept the same, so the TI
also changes, because so does the mean wind speed. The final wind can be observed in Figure 30,
where the change of wind speed is evident around 1400 s and 3100 s. Time between 0 s and 1300 s
is called Zone A and time between 1500 s and 3000 s is called Zone B.
The objective of this wind input is to verify that the methodology is valid for changes in the wind
conditions in a dynamic code (in this case FAST.Farm). The variation of the environmental conditions
has been considered necessary to verify that the wind estimator works correctly and the control
settings related to the supercontroller are modified according to this. The wind files created using
TurbSim2 present approximately constant characteristics with respect to mean wind speed and TI,
not allowing changes such as gusts. So, the outputs have been postprocessed. A Matlab script has
been developed in order to adapt the TurbSim2 outputs.
6.5.2 Baseline result

A FAST.Farm case has been run without supercontroller in order to get the baseline results in the
wind farm using the wind input described in subsection 6.5.1. The most important variables for the
analysis are the generator power and the blade root flapwise moment, GenPower and RootMyb,
respectively, in FAST.Farm. The analysis of the total power of the wind farm and the maximum DEL
will be the reference to check the behaviour of the wind farm controller.
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Figure 31. Power for all wind turbines (baseline)

In Figures 31 and 32 the results in terms of power and flapwise loads for all wind turbines in the
simulation can be seen. It is clear that the upstream wind turbine (WT1) must present a higher level
of power than the second (WT2) and third (WT3) wind turbines, as can be seen zoomed in Figures
33a and 33c. It can be observed that the first seconds of simulations, WT2 and WT3 present power
similar to the one in WT1, because of the delay of the wake in the dynamic simulation, which has
not reached yet the downstream turbines. WT3 shows the lowest level in terms of average value in
Zone A, while in Zone B the average values for WT2 and WT3 are very similar. This can be observed
in Figure 34a.
The average values observed in terms of flapwise bending moment are coherent with the mean
wind speeds for the wind turbines and with the observed power. The highest average moments are
observed in WT1, while WT3 presents the lowest values, quite similar to WT2 in Zone B (Figures 33b
and 33d).
Finally, the analysis of the DELs for the above-mentioned flapwise bending moment for time win-
dows every 300 s is included in Figure 34b. The average power in these time windows can also be
observed in Figure 34a. It is evident that WT3 presents in general the highest DEL values and this
is not dependent on the wind speed. This is still consistent with the results for the flapwise bend-
ing moment previously mentioned, where WT1 presented the highest average values. These do not
necessarily lead to higher DELs, which also depend on the moments oscillation. As expected, the
downwind turbine WT3 is experiencing the highest fatigue. WT2 shows a level of DEL close to that of
WT3, and WT1 presents the lowest values, except for the region where WT1 receives the gust from
8m/s to 12m/s in advance to the rest of the wind turbines, before this effect propagates within the
wind farm.

Copyright CL-Windcon Contract No. 727477 Page 123



D2.5 - Integrated wind farm controllers public

0 500 1000 1500 2000 2500 3000 3500 4000
Time [s]

0

10000

20000

30000

40000
Ro

ot
M

yb
1 

[k
N·

m
]

Baseline WT1
Baseline WT2
Baseline WT3

Figure 32. RootMyb for all wind turbines (baseline)
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Figure 33. Zoom analysis (baseline)
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Figure 34. Time window analysis (baseline)

6.5.3 Estimation of environmental conditions

As explained in previous sections, a tool has been developed in Python to estimate the environmental
conditions using data from FAST.Farm outputs, being also applicable to SCADA data.
This tool has been used with the FAST.Farm case of study in order to extract the environmental
conditions without the additional information of the wind input, because this data is not available
for the general cases of use of the supercontroller. Transients due to sudden changes of the current
supercontroller are not realistic (explained in section 6.3). Therefore the first 10 seconds of each time
window have not been taken into account for the average values, standard deviations and later DEL
of this example. For future work, it is expected to eliminate these limitations of the supercontroller,
therefore it will not be necessary to neglect any transient and it will be possible to work with the
complete data, or directly SCADA values. The estimations observed in Table 4 are calculated from
the casewith supercontroller, which presents similar values to the baseline case for all timewindows.
The regionswhere the gusts from 12m/s to 8m/s and from 8m/s to 12m/soccur, present a significant
value of estimated TI, and the estimatedwind velocity is betweenbothwind speeds, which is coherent
with the input wind file. The rest of the analyzed regions are also coherent with the inputs and
present a slight variation of mean wind speed and TI (Table 4), which in general will not generate
abrupt changes in the control settings if the precalculated control settings are robust.
6.5.4 Calculation of optimum derating configurations

Various optimizations have been run in order to generate a database for a particular wind farm lay-
out and wind direction. The wind speed has been modified from 8m/s to 12m/s and the TI from 4%

to 20%, in order to get a matrix that can approximate the solution for all conditions of the wind farm.
The objective function of the optimizer includes the maximization of the total wind farm power and
the minimization of the maximum DEL of the wind farm. In general, the obtained solutions lead to
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Time [s] V estimated [m/s] TI estimated [%]
0-200 12.5 4.5
200-500 12.1 3.9
500-800 12.3 4.0
800-1100 12.1 4.8
1100-1400 11.4 21.8
1400-1700 8.1 4.5
1700-2000 8.2 5.0
2000-2300 8.2 4.0
2300-2600 8.3 4.3
2600-2900 8.3 4.0
2900-3200 9.1 28.0
3200-3500 11.9 7.2
3500-3800 12.2 4.6

Table 4. Environmental conditions for each time window

lower loads in the wind turbines but also to a slight reduction of the total wind farm power at high
wind speeds, while for lower wind speeds the total power is also increased.
The configurations for different wind conditions can be seen in Tables 5, 6 and 7. These results
are included in a solution database that will be used by the supercontroller, in order to select the
configuration depending on the estimated environmental conditions. Note that the last downstream
turbineWT3 is also depowered in the optimized configurations due to the consideration of DEL in the
objective function. On the contrary, if only power was taken into account in the objective function,
then it would be intuitive to think that this turbine should take advantage of all the available power
in the wind as the last turbine in the row or column.
The configurations for the different wind turbines present a continuing trend for 8m/s wind speed.
For WT1 at 8 m/s, the set point increases with the turbulence. Similar trend is observed for WT2,
and WT3 presents negative growth with the turbulence (Table 5). However, this constant increase or
decrease in the set points with the TI is not observed in the solutions for wind speed 10 m/s (WT1
and WT2) and for 12 m/s (WT2), where some irregular trends or oscillations between different set
points are obtained. The reason for the oscillation, for example in WT2 at 12m/s between 95/80/85

and 95/85/85, is that the result of the objective function for both results is very close. The table
of solutions could be slightly modified in order to increase its robustness, with a similar quality of
results. For the current study, the proposed post-process of the database has not been included.
6.5.5 Supercontroller operational modes

The created database of configurations is used together with the estimation of the environmental
conditions. Taking into account all these data, the derating configurations for the three turbines are
obtained, which will be obviously applied in the next period of time. This information is shown in
Table 8.

Copyright CL-Windcon Contract No. 727477 Page 126



D2.5 - Integrated wind farm controllers public

WindSpeed TI Direction WT1 WT2 WT3
8 0.04 180 85 70 95
8 0.05 180 90 70 95
8 0.06 180 90 80 95
8 0.07 180 90 85 95
8 0.08 180 90 90 95
8 0.09 180 90 90 95
8 0.1 180 90 90 95
8 0.15 180 90 90 90
8 0.2 180 90 95 90

Table 5. Depowering settings for wind speed 8m/s

WindSpeed TI Direction WT1 WT2 WT3
10 0.04 180 90 90 90
10 0.05 180 95 90 90
10 0.06 180 95 95 90
10 0.07 180 90 95 90
10 0.08 180 90 90 80
10 0.09 180 90 90 80
10 0.1 180 90 90 90
10 0.15 180 95 90 85
10 0.2 180 95 90 85

Table 6. Depowering settings for wind speed 10m/s

WindSpeed TI Direction WT1 WT2 WT3
12 0.04 180 95 85 85
12 0.05 180 95 80 85
12 0.06 180 95 85 85
12 0.07 180 95 80 90
12 0.08 180 95 80 90
12 0.09 180 95 85 90
12 0.1 180 95 90 90
12 0.15 180 95 90 90
12 0.2 180 90 90 90

Table 7. Depowering settings for wind speed 12m/s
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time V estimated TI estimated WT1 der. WT2 der. WT3 der.
0-200 12.5 4.5 95 85 85
200-500 12.1 3.9 95 85 85
500-800 12.3 4.0 95 85 85
800-1100 12.1 4.8 95 85 85
1100-1400 11.4 21.8 90 90 90
1400-1700 8.1 4.5 90 70 95
1700-2000 8.2 5.0 90 70 95
2000-2300 8.2 4.0 85 70 95
2300-2600 8.3 4.3 85 70 95
2600-2900 8.3 4.0 85 70 95
2900-3200 9.1 28.0 95 90 85
3200-3500 11.9 7.2 95 80 90
3500-3800 12.2 4.6 95 85 85
Table 8. Derating solutions for all time windows of the FAST.Farm simulation

Using the supercontroller interface explained in section 6.3, it is possible to send depowering ratios
from wind farm control to all wind turbines. Values are uploaded instantly each certain time interval
chosen by the user, 300 s in this analysis. As a consequence of this step in reference signal, together
with the fast response in generator torque system, an overreaction detrimental to the life of the
turbine components is provoked. To avoid this problem some alternatives could be implemented in
future:

• Individual wind turbine control level: Modify each wind turbine controller (OpenDiscon) so that
the command to the generator torque actuator has a slower dynamics through appropriate
filtering. It seems less practical to perform it at this part of the system in a real implementation,
since this might interfere and affect the actuator’s expected behaviour in other solicitations
required by the turbine control system.

• Supercontroller level: amore straightforward option could be to filter the depowering set point
already at the supercontroller level, before sending the command to the individual wind tur-
bines. This option has the advantage that there is no need for changes in wind turbine con-
trollers code, which may reveal more practical in some real wind farm control applications.

6.5.6 Comparison of power and DEL

The general results, in termsof power and loads, of the integration of the supercontroller into FAST.Farm
can be observed in Figures 35 and 36. As expected, the power in WT1 is the biggest one, followed by
WT2 and WT3, which are sometimes quite similar. At this point two particularities should be men-
tioned:

• As has been said earlier, the obtained derating configurations are applied in the next period
of time. It can be clearly seen in WT1, which produces 100% of the power in the first 200 s, but
then decreases a little bit, down to 95%. In WT2 and WT3 it also happens, although it is not so
well seen in the Figure 35.
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• The wake produced by WT1 takes some time to reach the following turbines and that phe-
nomenon can be seen when the pulse in the wind speed happens. The power of WT1 changes
almost immediately, but it takes a few seconds to affect WT2 and a few more to affect WT3. It
can be also seen in the initial instants for WT2 and WT3.

Regarding the loads, there is not such a big difference between the turbines, as it happened with the
power. It is worth mentioning here that quite high peaks in the loads occur when a big change in
the derating setting is applied (> 10%). As has been mentioned earlier, this happens because it has
not been taken into account in the optimization the difference between two consecutive derating
settings.
The actuator command could be appropriately filtered in order to avoid these peaks as explained
above in subsection 6.5.5. Additionally, for the sake of global efficiency, restrictions could be in-
tegrated to avoid unnecessary modifications of the setting points in the wind turbines that do not
generate a significant improvement in the wind farm performance but lead to actuators’ energy con-
sumption.
The analysis of these results must include the comparison with respect to the baseline case without
supercontroller, in order to evaluate the validity of the integration and the quality of the wind farm
controller.
First, a comparison of the power and loads of the upstream wind turbine WT1 can be seen in Figures
37 and 38. It is evident that the power of this first wind turbine in comparison with the baseline case
is lower, except for the initial instants without wake affection in downstream turbines, as has already
been said. This is also coherent with the depowering solutions obtained using the optimizer. The
comparison of the loads shows important peaks in the blade root flapwise bending moment when
abrupt changes of the depowering configurations are commanded by the supercontroller. These
abrupt changes have been neglected in the wind estimations, as previously explained in subsection
6.5.3.
In any case, the general oscillations of the loads seem to be similar to the baseline case, because the
ambient conditions of this first wind turbine are equivalent and its control settings do not present a
significant effect on loads. In Zone B, a slight reduction in the mean value of the loads can be seen.
However, the DELs depend more on the standard deviation of the load than on the mean value.
Hence, this reduction does not seem to have a big impact in the DEL of the turbine.
In Figure 39 a zoom of the previous graphs can be seen. In Figure 39a and 39c a zoom of the power is
shown. As has beenmentioned in the previous paragraphs, the power of the upstream wind turbine
is reduced a little bit when the supercontroller is utilized. In Figure 39b and 39d a zoom of the loads is
shown. Again, which has been previously said can be better appreciated. In Zone A the loads with the
supercontroller are minimally lower, but in Zone B is clearer that there is notable difference between
the mean value of both cases.
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Figure 35. Power for all wind turbines (with supercontroller)
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Figure 36. RootMyb for all wind turbines (with supercontroller)
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Figure 37. WT1 Power Comparison (baseline and supercontroller)
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Figure 38. WT1RootMyb Comparison (baseline and supercontroller)
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Figure 39. WT1 zoom Comparison (baseline and supercontroller)
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Figure 40. WT2 Power Comparison (baseline and supercontroller)
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Figure 41. WT2RootMyb Comparison (baseline and supercontroller)

The general performance of the second wind turbine is analyzed in Figures 40 and 41, comparing the
baseline results and the outputs with the supercontroller. A slight reduction of the power is observed
during the complete simulation. This power reduction is related to the depowering configuration and
the wind condition for this wind turbine. Due to this turbine configuration, the loads in the blade root
are also reduced. Apart from the big peaks aforementioned, not only the mean value, but also the
standard deviation is lowered using the supercontroller.
In Figure 42 the power and loads can be seen in more detail. The power with the supercontroller is
usually lower (Figure 42a and 42c) and so are the blade root flapwise loads, both in mean value and
standard deviation (Figure 42b and 42d). This improvement is supposed to minimize the blade root
flapwise DELs.
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(b) WT2RootMyb (zone A)
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(c) WT2 Power (zone B)
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Figure 42. WT2 zoom Comparison (baseline and supercontroller)
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Figure 43. WT3 Power Comparison (baseline and supercontroller)

With regard to the third turbine (the most downstream one), its power and blade root flapwise load
are shown in Figures 43 and 44 for both cases: baseline and with supercontroller. Its power is, in
most cases, bigger with the supercontroller than in the baseline case, as one could expect. This is
due to the fact that the upstream turbines are in derating conditions, producing a weaker wake and
therefore this wind turbine receives a higher wind. The loads may seem similar, but, as has been
stated before, the standard deviation plays a more important role than the mean value. In this case,
themean values are similar, but the deviation is noticeably lower in the case with the supercontroller
(ignoring the big peaks).
In Figure 45 a zoom of the power and loads is shown. The power is almost always bigger, but this
difference can be really appreciated in Zone B, where the downstream turbine power with super-
controller is close to 200% the baseline case (Figures 45a and 45c). The mean value of the loads is
similar, especially in Zone A, but the standard deviation is lower, leading to lower DELs (Figure 45b
and 45d).
This standard deviation difference can be better seen if we look at the signals in the frequency do-
main. A Fast Fourier Transform (FFT) has been applied to both signals in both zones. As can be seen
in Figure 46, there are quite important peaks around 0.1 Hz, which are noticeably lower when the
supercontroller is applied. As has been stated before, this reduction will have a significant impact on
the DELs.
The average power for every time window (each 300 s) can be observed in Figures 47a, 47c and 47e,
where the comparison is clearer than in the temporal comparisons, being the conclusions equivalent.
In order to claim that the reduction in the standard deviation (or a peak in the frequency domain)
of the blade root flapwise loads leads to a reduction in the DELs, now these ones are analyzed. The
DELs for all three wind turbines are calculated for all time windows every 300 s (except the initial one,
which is calculated taking 200 s) and can be seen in Figures 47b, 47d and 47f.
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Figure 44. WT3RootMyb Comparison (baseline and supercontroller)
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Figure 45. WT3 zoom Comparison (baseline and supercontroller)
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Figure 46. WT3 FFT Comparison (baseline and supercontroller)

For the upstream wind turbine the power is reduced if the supercontroller is used, but so do the
DELs (Figure 47a and 47b). As has been said earlier, there is not such a big difference between both
cases, because this turbine does not receive any wake coming from any other turbine and therefore
the supercontroller does not improve the baseline case to great extent.
Regarding the second wind turbine (Figure 47c and 47d), the differences are now bigger, specially
in the DELs. As it happened in the previous turbine, the power is slightly reduced with the super-
controller, but in this case the DELs are reduced in a more significant manner, due to the standard
deviation reduction shown before.
The most downstream turbine WT3 is supposed to be the most promising one to use the supercon-
troller, and analyzing Figure 47e and 47f these assumptions are confirmed. The power is increased
and the DELs are reduced in a significant manner due to the derating combinations carried out in
the upstream wind turbines.
Figure 48 shows more clearly how the supercontroller is capable of reducing the damage equivalent
loads and increasing the power of the wind farm as a whole, in comparison with the baseline case,
where every wind turbine has its own control scheme and act independently from the others. The
percentages of the maximum DEL in the wind farm with respect to the baseline show the significant
reduction of load for most of the time windows where the supercontroller is active.
6.6 Conclusions and Future Work

This chapter has shown the effective dynamic integration of the feed-forward induction scheme for
wind farm power and loads optimization, initially introduced in Deliverable D2.3 [55], with adaption
of the optimized turbine set points to the variation in ambient conditions. In particular, it was inte-
grated intomedium-fidelity simulations in FAST.Farm, although the configuration can also be applied
to measurable SCADA data. Different building blocks within the supercontroller were developed for
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Figure 47. Time window comparison (baseline and supercontroller)
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Figure 48. General results in percentage: Power of the wind farm and Maximum DELRootMyb

such purpose, such as the ambient conditions estimation. The developments represent an incre-
mental step towards full closed-loop application of induction wind farm control.
The simulation results in a 3x3 wind farm, with variation of ambient wind speed and TI, show how
wind farm control can lead to better results at farm level than the greedy approach (baseline). Some
references call induction control into question when it comes to increase farm power production
on static high-fidelity simulations ([7], [18], [36]). By contrast, the promising field of application for
this technology seems to be the joint optimization of power and loads. Maximum DEL for flapwise
bending moment was reduced in the example while practically maintaining the total power produc-
tion with slight decreases and increases. This opens up the possibility to also take life management
aspects into consideration.
Some improvements to the presented methodology have been selected for future work:

• Modify the abrupt change of derating settings in the supercontroller, in order to avoid the high
load peaks in the transition between different configurations

• Post-process or development in the supercontroller to increase the robustness of the solu-
tions, in order to get farm configurations less dependent on the environmental conditions.
This improvement would reduce unnecessary modifications of setting points with similar re-
sults, therefore reducing the actuators demand and the effect of transients

• Introduce the estimation of variations in ambient wind direction
• Selection of best parameters to get the free-stream conditions for different kind of cases
• Quality improvement of estimation of free-stream conditions
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• Optimization taking into account DEL at different components of the wind turbine
• Online calculation of optimum derating with the exact environmental conditions input (online
solution)

• Effective feedback of downstream turbines information to get a full closed-loop configuration
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7 WIND FARM CONTROLLER DESIGN AND TESTING WITH LONGSIM

This chapter presents a wind farm control solution that leverages the simplified surrogate model
LongSim from DNV GL. This controller is synthesized for the onshore wind farm in Sedini on the
island of Sardinia, Italy for real-world experiments on axial induction control for powermaximization.
In this chapter, special attention is paid towards the shift from static to dynamic control, which is a
topic mostly unexplored in the literature, yet of immense importance when considering real-world
wind-farm operation.
The core content of this chapter is presented from the following page onwards.
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7 Wind farm controller design and testing with LongSim 

7.1 Introduction 
This chapter describes the use of DNV GL’s ‘LongSim’ code for the design and simulation testing of wind 

farm controllers. The work is based on a part of the Sedini wind farm which was selected to be used for 

field testing of both induction and wake steering controllers within the CL-Windcon project. Thus, this 

chapter is an account of the preliminary work done in preparation for those field tests. Eventually, 

because of time and resource constraints, the additional instrumentation required for the wake steering 

tests was not installed, and so only the induction control tests could be carried out. The final calculations 

in preparation for these tests will be reported in Work Package 3. 

The calculations used for the actual tests made use of confidential wind turbine data provided by GE 

which may not be revealed, so where necessary, information from the public-domain WindPACT turbine 

model [1] has been used in the description provided here, since this model is fairly closely based on a GE 

1.5 turbine similar to those used for the Sedini testing. 

The LongSim model has been previously described in CL-Windcon Deliverable D1.2 [2]. The workflow 

described here consists of the following main stages: 

1) Site and turbine Input data set-up for LongSim. 

2) Steady-state set-point optimisations using LongSim, to generate look-up tables of optimal set-points 

for the turbines to be used in the experiment as a function of steady-state wind conditions. 

3) Repeat optimisations for different wake model variants to evaluate the sensitivity of set-points and 

wind farm control performance to wake modelling uncertainties. 

4) Generation of final look-up tables suitable for implementation, aiming at robustness to wake model 

uncertainty and to uncertainties in the measurement of the wind conditions over the relevant area. 

5) Implementation of a realisable dynamic control algorithm, including measurement of wind 

conditions, filtering and choice of sampling interval, set-point table look-up and communication of 

the set-points to the turbines. 

6) Dynamic time-domain simulations using LongSim, using realistic time-varying wind conditions 

derived from historical met mast data at the site, and attempting to model as many real-world 

effects as possible. 

7.2 Site layout and experiment design 
Details of the Sedini wind farm, planned instrumentation and test campaigns are provided in CL-

Windcon Deliverable D3.2 [3]. The farm consists of 43 GE 1.5 turbines laid out as in Figure 7.1. Most of 

the turbines are of type GE 1.5s (1.5 MW, 70.5m rotor diameter, 65 m hub height), but the seven 

turbines shown in red are the larger GE 1.5sle (1.5 MW, 77 m rotor diameter, 80 m hub height). The 

diagonal row of turbines #13 and #31 – #38 are involved in the experiment described here, and since 

only wind directions blowing along this row from a roughly south-westerly direction are relevant to the 

experiment, only these nine turbines were modelled in LongSim in the work described here. Terrain 

complexity has been ignored – with south-westerly wind directions, the effect of the terrain on the wind 

flow at these nine turbines is likely to be relatively small. 

In the experiment as originally designed, both induction and wake steering schemes for wake control 

were to be tested using these turbines. The two schemes were to be tested separately. Since no loads 
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instrumentation would be available on these turbines, the wake control in each case is aimed only at 

increasing the power production from this row. The wake control will be switched on and off at regular 

intervals so that the performance with and without wake control can be compared. As it is important to 

compare in similar wind conditions, the upstream turbine, #38, will be used to define the wind 

condition, and will remain in baseline operation throughout to ensure that the wind condition 

measurement is unaffected by the wake control. This means that some of the potential wake control 

gains will not be realised, since some additional gain would be expected if #38 could also be controlled. 

For induction control, the power output of turbines #31 – #37 can be modified, and the power output of 

all nine turbines will be monitored (although the power output of #38 should not be affected). For wake 

steering control, improved wind vanes are needed, and for cost reasons these were to be installed only 

on turbines #34 - #38. With #38 used as the ‘wind sensor’, this means that wake steering would be 

applied to four turbines, #34 - #37, but again the power output of all nine turbines would be monitored. 

In the end, time and resource constraints mean that the improved wind vanes were not installed on #34 

- #37. As a result, the wake steering tests on this row of turbines had to be abandoned, and only the 

induction control tests could be carried out. Nevertheless, the preliminary design work for both the 

wake steering and the induction control tests is presented in this report. The final optimisations and 

simulations for the induction control tests that were actually carried out will be reported as part of Work 

Package 3. 

 

Figure 7.1: Sedini site layout 
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When running the set-point optimisations with LongSim, the optimiser only modifies the set-points of 

the turbines which can be controlled. Furthermore, when running the dynamic simulations, only the 

wind conditions measured at turbine #38 are used as input to the set-point look-up tables. The 

simulation generates a realistic correlated time-varying wind field covering all the turbines, so each 

turbine will see different wind conditions at any one time. 

7.3 Input data for LongSim 

7.3.1 Site layout 
The positions of turbines #13 and #31-38 were supplied by GE. Although the wake of turbine E1 could 

have an effect at the more southerly end of the direction range of interest, it was not included in the 

modelling because the required turbine data for this larger turbine was not available. 

7.3.2 Wind turbines 
LongSim can model the turbines to different levels of detail. At the simpler end, power and thrust curves 

can be used to define the turbine power performance and the thrust force which determines the wake. 

For somewhat greater fidelity, look-up tables of power and thrust coefficients as a function of tip speed 

ratio, pitch angle and yaw angle can be used, together with basic control gains and other parameters 

which allow the pitch action and the rotor speed degree of freedom to be simulated. Yaw control logic 

can also be implemented. 

For Sedini, power and thrust curves were provided by GE for different yaw angles, and also for different 

settings of the power reduction set-point used for induction control, so the pitch and rotor speed 

degrees of freedom were not simulated explicitly. Turbine yaw control, however, was simulated 

explicitly, using the yaw hysteresis logic and yaw rate supplied by GE. For reasons of confidentiality, the 

turbine details cannot be given here. 

7.3.3 Wake models 
LongSim uses ‘engineering’ wake models superimposed on an underlying wind field. Although some 

detailed physical effects may not be captured in such a model, it runs very fast on a single core, making 

it suitable for iterative optimisations both in steady state and in the time domain. Several alternative 

wake models are currently available in LongSim, some of which also have empirical parameters which 

can be varied. Research on the different wake model variants is still ongoing, and it is not yet clear which 

wake model variants are likely to perform best in which situations. There are different models available 

to describe the velocity profile in the wake and how it evolves downstream (including effects of wake-

added turbulence), the lateral deflection of the wake caused by yaw misalignment, and the 

superposition of multiple wakes. To obtain a representative range of results, the following specific 

variants have been used in generating the results which follow: 

A1: Standard Ainslie model [4] using added turbulence, dominant wake superposition and a 

meandering correction all as described in [2], and the wake deflection model of Jimenez [5] with 

deflection parameter kd = 0.15 as in Gebraad [6]. 

A2: Same as A1 but without the meandering correction. 

E1: EPFL default model as in [7]. 

E2: EPFL model matched to NREL version of Floris [8], which includes a factor 2 on wake deflection. 
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7.4 Steady-state set-point optimisations with LongSim 
LongSim was used to perform steady-state optimisation of set-points. It loops through a pre-defined 

range of wind speeds, directions and turbulence intensities, and for each wind condition, the set-points 

are varied iteratively to optimise a defined merit function, using an optimisation algorithm based on the 

simplex method [9]. For each turbine, the optimal set-points are then output as look-up tables 

dependent on wind speed, direction and turbulence intensity. 

Optimisations were performed with different wake models, as described above. Then the optimal 

setpoints calculated with one wake model were tested against other wake models to see to what extent 

the power gains obtained with one wake model might be realised if the wake characteristics were 

actually different. This gives an impression of the robustness of the wake control to variations in wake 

characteristics. Furthermore, the use of setpoints averaged across different wake models has also been 

investigated. 

In the following graphics, the power increase is presented as a ratio of the power obtained with a given 

set of optimised setpoints to the power obtained without wake control, using steady-state analysis. The 

results are presented as a colour map against wind speed and direction, for different turbulence 

intensities. The actual setpoints for individual turbines are presented in a similar way, to give an 

impression of how smooth the setpoint lookup tables are. This is especially important for wake steering, 

because of the need to avoid rapid variation of yaw offsets which could significantly increase yaw 

actuator duty. 

7.4.1 Induction control optimisations 
For induction control, the power reduction set-points were optimised. The following inputs were 

defined for these initial optimisations: 

• Turbine set-points to optimise:  #31 to #37 

• Permitted set-point range: 0 (no power reduction) to 10 (giving roughly 300 kW power reduction at 

10-12 m/s but tapering off to zero below 6m/s or above 16 m/s) 

• Merit function:  total energy production from the whole row, i.e. turbines #13 & #31 - #38 

• Wind speeds:  6, 7, 8, 9, 10 m/s 

• Turbulence intensity:  10%, 13%, 14%, 17% 

• Wind directions:  200º to 245º in steps of 2.5º 

• Wake models: A1, A2, E1 

Figure 7.2 shows the power ratios achieved in the steady state with the different wake models at 10%, 

13% and 17% turbulence. Wake model A1 gives the highest ratios, over 1.1 (i.e. 10% increase), in narrow 

direction sectors between 225 and 240 degrees, and for wind speeds in the upper half of the range. 

Without the meandering correction (wake model 2), there is almost no benefit anywhere. Wake model 

E1 shows benefits over a wider range of conditions, but only up to about 5% increase. In all cases, as the 

turbulence intensity increases, the benefit decreases significantly. 
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Figure 7.2: Power ratios for induction control at 10%, 13% and 17% turbulence 
Wake model A1 (top), A2 (middle), E1 (bottom) 

Figure 7.3 shows the optimized power reduction setpoints for four of the seven controlled turbines, as 

a function of wind direction.  The colours represent different wake models; the thin lines represent 

different wind conditions: different line styles represent turbulence intensities, with separate lines for 

each wind speed. Clearly, the optimal setpoints vary widely, but some patterns emerge.  The thick 

coloured lines show the setpoints averaged across all wind speeds and turbulence intensities for each 

wake model. The black line is an average across all three wake models; using this for the induction 

control will result in a scheme which is suboptimal, but might perhaps be ‘robust’ to uncertainties in 

knowing both the wake characteristics and the actual wind speed and turbulence intensity. This is tested 

in Figure 7.4 (using the same colour scale as in Figure 7.2). Although the setpoints are no longer 

optimal for each model, nor for the specific wind speed and turbulence intensity, the power gains, 

although smaller, are still quite similar to the optimal gains in Figure 7.2. This gives some confidence 

that it may be possible to achieve some of the gain in practice, despite the uncertainties. 
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At some points in Figure 7.4, the power gain is actually slightly negative, because the averaged 

setpoints are actually making things worse for a particular wake model in that condition.  The colour 

scaling is limited to 1 or greater for comparison with Figure 7.2, so all areas with power ratio less than 

or equal to 1 are dark blue. In practice, the lowest value seen in any of these cases was just below 0.99, 

apart from one or two individual points at 6 m/s (but the induction control should anyway be disabled 

here because the setpoint reduction feature in the turbine controllers only acts above 7m/s).  

At one or two individual points in Figure 7.4, the power gain is actually a bit higher than in Figure 7.2. 

This is simply an indication that the optimization did not always converge to the global optimum; there 

is of course no guarantee of reaching the global optimum, given the nature of the merit function and the 

optimization scheme used. 

 

  

Figure 7.3: Example power reduction setpoints for four of the turbines: #37, #35, #33, #31 
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Figure 7.4: Power ratios using ‘robust’ setpoints tested against the different wake models: A1 
(top), A2 (middle), E1 (bottom), at turbulence intensities of 10%, 13% and 17%  
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• Wind directions:  220º to 260º in steps of 2.5º 

• Wake models: A1, A2, E1, E2 
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Figure 7.5: Power ratios for wake steering at 10%, 13% and 17% turbulence. Wake model A1 
(top), A2, E1 and E2 (bottom). Note that the colour scaling is up to 1.14, appropriate for the first 

three rows, but in the E2 case, the dark red areas contain power ratios exceeding 1.3. 
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Figure 7.5 shows the power ratios achieved in the steady state with the different wake models at 10%, 

13% and 17% turbulence. Wake model E2 gives by far the greatest power ratios (up to 1.3). The wake 

deflections are effectively twice as great as in model E1, and this is reflected in more than double the 

power increase. The wake steering is effective in several direction bands, but especially around 220º – 

240º, across the whole wind speed range, and even at the higher turbulence levels. 

Yaw setpoints for the four controlled turbines are shown in Figure 7.6. As before, the line styles show 

turbulence intensity, with all wind speeds plotted, and the colours show the different wake models. The 

thick coloured lines show averages over wind speeds and turbulence intensities for each wake model, 

and the thick black line is an average over all wake models. The patterns appear to be rather more 

consistent than in the induction control case. Note that in some cases, positive and negative yaw 

setpoints seem almost equivalent, so when averaging, the mean absolute yaw offset is taken, with its 

sign set to the sign of the mean yaw offset. Furthermore, if the average setpoint for a particular 

direction has the opposite sign from its two neighbours, its sign is changed. Although these 

modifications will result in suboptimal steady-state performance, they are likely to perform better in a 

dynamic situation, avoiding frequent large reversals in yaw offset. 

  

  

Figure 7.6: Yaw setpoints for the controlled turbines: #37, #36, #35, #34 
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A further possible modification to the yaw setpoints is to introduce directional smoothing, to allow for 

the uncertainty in wind direction measurement. (This could also be done for induction control setpoints, 

but the averaged setpoint curves in that case are already smoother than in the wake steering case.) As 

an example, Figure 7.7 shows the yaw setpoints as in Figure 7.6 but with directional smoothing applied 

corresponding approximately to a directional uncertainty with a standard deviation of 2.12º. 

  

  

Figure 7.7: Yaw setpoints for the controlled turbines: #37, #36, #35, #34 with directional 
smoothing applied 
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7.4.3 Joint setpoint optimisations 
In the general case, depending on the layout, there may be conditions in which the optimal performance 

is obtained with a combination of power reduction setpoints and yaw offsets, in other words using a 

combination of wake steering and induction control. Simply by including both sets of setpoints in a 

single setpoint vector for optimisation, LongSim is capable of jointly optimising all the setpoints. An 

example of such joint optimisation was reported in [10]. Such an optimisation has not been carried out 

for Sedini however, partly because the relevant turbine information was not provided (i.e. the power 

and thrust curves as a function of both the power reduction setpoint and the yaw misalignment), and 

because the field test program would not allow for the testing of such a joint control strategy. 

7.4.4 Behaviour around cut-in wind speed 
During the optimisation of setpoints in low wind speed conditions, it is important to consider the turbine 

supervisory control behaviour around the cut-in wind speed. Even at ambient wind speeds a little above 

cut-in, some of the more wake-affected turbines may not be producing any power. If these turbines are 

effectively idling, they will not produce a significant wake; however, if these turbines are still rotating at 

significant speed, their thrust coefficients may still be quite large, and they may therefore still have a 

significant waking effect on other turbines. For the optimisation to work correctly, therefore, it is 

important to specify what the thrust coefficient will be for turbines which are not producing power. If 

wind conditions change slowly and turbines producing zero power rapidly feather to idling mode, the 

optimisation should assume a small thrust coefficient for these turbines. However, if wind conditions are 

changing more rapidly compared to the time taken for the supervisory controller to decide to switch to 

idling mode, then the thrust coefficient will be much higher, and the optimisation should take this into 

account. In the absence of detailed information regarding supervisory control actions for the Sedini 

turbines, the above optimisations have assumed an intermediate thrust coefficient of 0.3 for turbines 

producing zero power. 

7.5 Dynamic control algorithm implementation 
The smoothed and ‘tolerant’ set-point look-up tables calculated as above were incorporated into a 

dynamic wind farm control algorithm, as described in this section. The resulting wind farm control 

algorithm was then tested using realistic time-domain simulations as described in Section 7.6. 

Firstly, the wind conditions are determined. In this case, turbine #38 is used to define the wind speed, 

direction and turbulence intensity at any point in time. The wind speed estimation algorithm used in the 

turbine controller could be implemented in the simulation, but as details of the actual algorithm were 

not available, the actual rotor-average wind speed has been used directly. In practice a wind speed 

estimator will have some error and some lag, but since this is then filtered, it is not important to model 

the estimation errors, as long as any bias error is small. Random estimation errors, including bias, can of 

course be introduced into the simulation, but this has not been done in this case. 

The wind direction estimate is made up of the measured nacelle position plus the measured wind vane 

signal. Once again, measurement errors could be introduced into the simulation, but this was not done 

as no sensor accuracy information was provided. 

For the turbulence intensity, a perfect estimate has again been assumed. In practice, the variations in 

estimated wind speed over each period could be used to estimate turbulence intensity, with a 

correction for higher frequencies based on an assumed turbulence spectrum. 
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The loss of performance which can be expected due to imperfect estimation of wind conditions are to 

some extent taken into account in the smoothing of the look-up tables. Uncertainties in wake modelling 

probably have a much greater effect. 

As mentioned, the wind condition indicators (speed, direction and turbulence) are then filtered. A first-

order filter with a time constant of 60s has been used. This value was chosen to match the wind farm 

controller time step to be used at Sedini, and also because the required wind condition is meant to be 

an average over all the turbines, and it takes time for wind conditions measured at turbine #38 to 

propagate to the middle of the set of controlled turbines.  At 8m/s for example, the 60s time constant 

corresponds to an averaging distance of 480m – compare with Figure 7.1. Repeat simulations with 

different filter time constants could be used to tune this value for best performance. The time constant 

could also be made to vary, so that it corresponds to the same distance at any wind speed. 

The filtered wind conditions are used with the look-up tables to find the current set-points for each 

turbine. The set-points are updated every minute, since this is the update time to be implemented at 

Sedini for these tests; but as for the filter time constant, repeat simulations could be used to select the 

best update time. 

Power reduction setpoints are then applied at each turbine without significant delay in the case of 

induction control. For wake steering, yaw offset demands are also sent to each turbine without delay, 

but then the way in which these offsets interact with the turbine yaw control algorithm has to be 

modelled correctly, since this could have a significant impact on the effectiveness of the wake steering 

control. The turbine yaw control is assumed to continue operating as normal, but with the yaw offset 

simply applied to the wind vane signal before it is processed by the yaw control logic. 

A different approach to yaw control, in which the turbine yaw controllers are over-ridden by a nacelle 

position command calculated centrally by the wind farm controller by adding the offset to the estimated 

wind direction, has also been simulated. This gives improved performance, but it was not practical to 

implement this at Sedini in the context of this project. 

7.6 Dynamic time-domain simulation testing with LongSim 
Dynamic simulations were carried out using LongSim, with and without the wind farm controllers for 

induction control and wake steering described above, so that the benefits could be evaluated. The 

simulations used a correlated stochastic wind field covering the turbines, generated by LongSim from 

measured met mast data. The results were evaluated in terms of power output and, in the case of wake 

steering, the yaw actuator duty. 

7.6.1 Wind field 
The technique for generating the correlated wind field has been described in [2]. The 10-minute average 

historical met mast data was inspected, and a period selected where the wind speeds and directions 

were varying over a range suitable for exercising the wind farm control. This time history was assumed 

to apply at a point in the middle of the row of turbines, and higher-frequency synthetic turbulence was 

added at that point, and also at a grid of points covering all the turbines, using assumed coherence 

properties, so that variations across the wind farm are realistically correlated, spatially and in time. 

Figure 7.8 illustrates the variations in wind speed, direction and turbulence during the two-hour period 

selected for the particular set of simulations described here. 
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Figure 7.8: Wind conditions for the simulation test. Wind speed (top), direction (middle) and 
turbulence intensity (bottom). The black lines are smoothed 10-minute met mast data, and the 
red lines are the rotor average wind speed and direction at turbine #38, showing the synthetic 

turbulence from that point in the wind field. 

7.6.2 Yaw control 
One aspect of the turbine supervisory control which it is important to simulate correctly is the yaw 

control, especially in the case of wake steering since the turbine yaw logic could have a significant 

impact on the effectiveness of this type of wind farm control. 
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The yaw logic used by the Sedini turbines is proprietary, but was made available to DNV GL for the 

purposes of the CL-Windcon project, and was implemented in the turbine description used for the 

LongSim simulations. A typical example of the simulated yaw control response is shown in Figure 7.9. 

 

Figure 7.9: Typical simulated yaw control response. 

7.6.3 Induction control results 
The following set of time-domain simulations have been run for illustration: 

Wake model 
used in the 
simulation 

Wake model used for 
setpoint optimisation 

Further processing of 
setpoints 

Run name 

A1 - - Base_A1 

A1 A1 - IC_A1_A1 

A1 Average of A1,A2,E1 Averaged over wind speeds 
and turbulence intensities 

IC_A1_Ave 

- A1 - QS_IC_A1 

A2 - - Base_A2 

A2 A2 - IC_A2_A2 

A2 Average of A1,A2,E1 Averaged over wind speeds 
and turbulence intensities 

IC_A2_Ave 

- A2 - QS_IC_A2 

E1 - - Base_E1 

E1 E1 - IC_E1_E1 

E1 Average of A1,A2,E1 Averaged over wind speeds 
and turbulence intensities 

IC_E1_Ave 

- E1 - QS_IC_E1 

Table 7.1: Induction control cases simulated 

In each case, the results with induction control are compared to the base case for the same wake model 

without induction control – see Table 7.2. The run names beginning with QS are not from dynamic 

simulations – they are ‘quasi-static’ results obtained by interpolating the power increases from the 

steady-state optimisations using the actual simulation wind conditions (see Figure 7.8), point by point. 
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Run name Power increase compared to base case 

IC_A1_A1 0.13% 

IC_A1_Ave 0.09% 

QS_IC_A1 1.41% 

IC_A2_A2 0.36% 

IC_A2_Ave 0.02% 

QS_IC_A2 0.76% 

IC_E1_E1 1.23% 

IC_E1_Ave 1.59% 

QS_IC_E1 0.96% 

Table 7.2: Power increases from induction control in dynamic simulations 

The results are quite variable. In keeping with the steady-state results of Section 7.4.1, wake model A1 

gives the best quasi-static result, but the dynamic simulation gives less than one tenth of the benefit. If 

the averaged setpoints are used, the result is worse.  Wake model A2 produces the worst quasi-static 

result, but performs significantly better in the dynamic simulations, achieving about half of the quasi-

static gain, although if the averaged setpoints are used the gain is virtually zero. Wake model E1 

produces the best dynamic simulation results, which even exceed the quasi-static result, and if the 

averaged setpoints are used, the result is even better. 

The variability of these results suggests that longer simulations are probably needed in order to obtain 

more reliable comparisons, and this is desirable in any case to cover a wider range of wind conditions. 

Nevertheless, these short sample simulations already indicate that some gains may be expected from 

induction control even when the dynamic effects are taken into account. 

Some sample time-domain results for the best case (IC_E1_Ave) are presented for illustration in Figure 

7.10. The differences in total wind farm power compared to the base case and the quasi-static result are 

subtle, sometimes slightly positive and sometimes slightly negative. Setpoint time histories are shown at 

four of the turbines. The actual power at the most upstream controlled turbine, #37, is reduced because 

of the power reduction setpoints, but the resulting power increase at the next turbine is quite apparent 

(this turbine also has some setpoint reductions, but the power increases overall because of the high 

wind speed). 
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Figure 7.10: Sample dynamic simulation results – case IC_E1_Ave. 

Top: Wind farm power (red) compared to base case and quasi-static result. 
Middle: example power reduction setpoints at four turbines. 

Bottom: Turbine power compared to base case, at two turbines 
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7.6.4 Wake steering control results 
Still using the same wind conditions, the following set of time-domain simulations with wake steering 

have been run for illustration: 

Wake model 
used in the 
simulation 

Wake model used for 
setpoint optimisation 

Further processing of 
setpoints 

Run name 

A1 - - Base_A1 

A1 A1 - WS_A1_A1 

A1 Average of 
A1,A2,E1,E2 

Averaged over wind speeds 
and turbulence intensities 

WS_A1_Ave 

- A1 - QS_WS_A1 

A2 - - Base_A2 

A2 A2 - WS_A2_A2 

A2 Average of 
A1,A2,E1,E2 

Averaged over wind speeds 
and turbulence intensities 

WS_A2_Ave 

- A2 - QS_WS_A2 

E1 - - Base_E1 

E1 E1 - WS_E1_E1 

E1 Average of 
A1,A2,E1,E2 

Averaged over wind speeds 
and turbulence intensities 

WS_E1_Ave 

- E1 - QS_WS_E1 

E2 - - Base_E2 

E2 E2 - WS_E2_E2 

E2 Average of 
A1,A2,E1,E2 

Averaged over wind speeds 
and turbulence intensities 

WS_E2_Ave 

E2 Average of 
A1,A2,E1,E2 

Averaged over wind speeds 
and turbulence intensities, 
with directional smoothing 

WS_E2_AvSm 

As  WS_E2_E2 but with central yaw control WS_E2_E2_CY 

- E2 - QS_WS_E2 

Table 7.3: Wake steering control cases simulated 

As for the induction control cases, the mean power from each of the wake steering cases is compared to 

the appropriate base case, and also to the ‘quasi-static’ result obtained by interpolating the power 

increases from the steady-state optimisations using the actual simulation wind conditions (run names 

beginning with QS). The power increases are shown in Table 7.4, which also summarises the change in 

the yaw system duty caused by the wake steering control. 

For this row of turbines, the wake steering results show larger and more consistent power increases 

than the induction control results. The power increases would presumably be even larger if wake 

steering could be applied to more of the turbines: here only four turbines are controlled compared to 

seven in the induction control case; and in both cases, the increase would presumably be larger still if 

control were also applied to the first turbine, #38, rather than keeping it in baseline operation as a way 

of measuring the incident wind. 
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 Change compared to base case 

Run name Power increase Yaw manoeuvres Total yaw travel 

WS_A1_A1 0.29% -6.2% 8.4% 

WS_A1_Ave 0.38% -4.1% 10.3% 

QS_ WS_A1 1.48% n/a n/a 

WS_A2_A2 0.40% -5.2% 10.3% 

WS_A2_Ave 0.35% -4.1% 10.3% 

QS_ WS_A2 1.00% n/a n/a 

WS_E1_E1 1.38% -7.1% 11.4% 

WS_E1_Ave 1.44% -4.1% 10.3% 

QS_ WS_E1 1.35% n/a n/a 

WS_E2_E2 2.55% -7.1% 12.4% 

WS_E2_Ave 2.25% -4.1% 10.3% 

WS_E2_AveSm 2.31% -1.4% 8.7% 

WS_E2_E2_CY 3.29% -20.3% -2.5% 

QS_ WS_E2 3.02% n/a n/a 

Table 7.4: Power increases from wake steering in dynamic simulations 

Table 7.4 also shows a significantly greater benefit with the wake deflection assumptions of the EPFL 

model, and particularly if the wake deflection is effectively doubled as in model E2 (not surprisingly). 

The results using averaged setpoints are typically similar to using the ‘pure’ setpoints for each wake 

model, and sometimes actually give a slight improvement, perhaps because of reduced sensitivity to 

changing wind conditions. Comparing WS_E2_Ave against WS_E2_AveSm also indicates that directional 

smoothing can be slightly beneficial. 

Finally, comparing WS_E2_E2 against WS_E2_E2_CY shows that if it were possible to use centralised 

yaw control (see Section 7.5), overriding each turbine’s yaw control logic with a nacelle position demand 

from the wind farm controller, a significant further improvement is possible. In this case, the difference 

between the nacelle position demand and the actual nacelle position is integrated, and whenever the 

integrated error in radians reaches +5s (i.e. 5 radian-seconds, or 4.77 degree-minutes) the turbine yaw 

drive is switched on until the error returns to zero. An example of how this works is shown in Figure 7.11 

for turbine #37. The nacelle position is compared against the demanded position, and also against the 

nacelle position in the base case, and in the wake steering case using the turbine’s normal control logic. 

Looking at the yaw duty, in most cases the wake steering causes an increase in total yaw travel of the 

order of 10% (averaged across all 9 turbines, of which only four are controlled), although the number of 

yaw manoeuvres actually decreases. Using the directionally-smoothed setpoints has a beneficial effect 

on the yaw duty as well as on the power increase. The central yaw control strategy is particularly 

beneficial: as well as giving he greatest power increase, it reduces yaw manoeuvres by 20%, and the 

total yaw travel is actually reduced by 2.5% compared to the base case. 
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Figure 7.11: Effect of central yaw control – turbine #37. 
 

More sample time-domain results for the best case (WS_E2_E2_CY) are presented for illustration in 

Figure 7.12. As before, the differences in total wind farm power compared to the base case and the 

quasi-static result are sometimes slightly positive and sometimes slightly negative. Time histories of the 

yaw offsets at the four controlled turbines are shown in the middle plot. In the lower plot, the actual 

power at the most upstream controlled turbine, #37, is reduced because of the yaw offsets, but the 

effect on the power of the next turbine is generally positive. 
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Figure 7.12: Sample dynamic simulation results – case WS_E2_E2_CY. 
Top: Wind farm power (red) compared to base case and quasi-static result. 

Middle: yaw offsets at the four controlled turbines. 
Bottom: Turbine power compared to base case, at two turbines 
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7.7 Conclusions 
This chapter has demonstrated the use of the engineering code LongSim for the design and simulation 

testing of wind farm controllers, both induction control and wake steering control. It has been used to 

generate complete implementable wind farm controllers, and to test them in realistic dynamic 

simulations to evaluate performance and build confidence, ready for the field testing to be carried out 

at Sedini. 

LongSim has been used to generate optimal set-point tables in the context of quasi-static open-loop 

wind farm control. Considerable uncertainties in wake modelling remain, so controllers have been 

generated with different wake assumptions. Furthermore, controllers generated with some wake 

assumptions have then been tested against different assumptions, to build confidence that gains can be 

achieved despite wake modelling uncertainties. Various ways have been investigated for making the 

setpoint tables more robust to uncertainties in wind conditions and wake effects. 

LongSim has further been used to carry out time-domain simulations of these controllers in realistic 

time-varying conditions, to evaluate their performance in the face of many real-world effects, 

uncertainties and imperfections which the model is able to simulate. It also allows additional dynamic 

aspects of the control strategy to be developed and optimised, such as sampling intervals, filter 

parameters, estimation of wind conditions, and the way in which setpoints are actually implemented, 

including the effect on yaw actuator duty. For example, the benefits of a centralised yaw control 

strategy have been clearly demonstrated. 

This has provided a new level of confidence in the ability of such controllers to achieve desired 

performance improvements in real life. Controllers generated and tested in this way can be considered 

ready for implementation and field testing on the Sedini wind farm. 

The actual field tests on this row of turbines at Sedini will now consist only of induction control, since 

the yaw sensor upgrades required for the originally-planned wake steering tests unfortunately had to be 

abandoned. Before the start of the tests, LongSim will be used again to carry out final set-point 

optimisations using the most recent wake modelling improvements based on site SCADA 

measurements, and to run a final set of dynamic simulation tests. This will be reported in the Work 

Package 3 deliverables. 
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8 DATA-DRIVEN EMPC FEEDBACK WIND FARM CONTROL

In [55, Chap. 3] a feedback wind farm control concept based on data driven modeling and economic
model predictive control (EMPC) has been developed and it was tested in [56, Part IV].
The objective was to maximize the wind farm power. The measurements used were standard mea-
surements from a wind turbine i.e. power, pitch and generator speed. The actuator was relative
derating of the wind turbine as described in [26]. The control model was data driven multi-variable
auto regressivemodel with derating input (MARX). The controlmethod selectedwas economicmodel
predictive control (EMPC) [27].
The main motivation for the data driven model approach is that wake modeling is complicated and
may be less accurate in real terrain perhaps with hills and forest. The idea is that the recursive
estimation used for the MARX model potentially can account for all this.
For high excitation of turbine derating in the range between 0 and 0.5 the MARX model estimation
worked well. The wind speed and turbine power prediction was promising for horizon up to half an
hour. However, for excitation expected from static analysis in the range from 0 to 0.05 the MARX pa-
rameter uncertainty was to large. Consequently this particular approach is not suggested for further
testing. This does of course not rule out other data driven approaches based on other model struc-
tures and/or parameter estimation methods. However, induction control only is probably not the
right way to go. It should at least be combined with wake redirection control. This is also supported
by other results within CL-Windcon [55, 56, 24].
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9 LOAD-MINIMIZING ACTIVE POWER CONTROL FOR WIND FARMS

This chapter is concerned with the usage of axial induction control for two objectives, being active
power control (electricity grid integration) and structural load mitigation. This chapter stands in con-
strast with previous chapters which were predominantly focused on power maximization.

9.1 Introduction

As the participation of renewable energy sources in the electricity network increases, there is a strong
need for these energy sources to provide ancillary services to the electricity grid. Therefore, the
field of active power control has largely focused on having wind turbines and wind farms produce
a prespecified amount of power, or even have them track a reference power signal to deal with
fluctuations in the electricity consumption on the grid. In practice, this means that wind turbines
purposefully produce less energy than they could in theory extract to follow this prescribed reference
signal.
This chapter is concerned with an active power control solution. Moreover, this control algorithm in-
cludes a secondary objective being load minimization. Additionally, this work includes techniques of
yaw-based wake steering for power maximization, as described earlier throughout this deliverable,
to maximize the power production when necessary.

9.2 Methodology

When it comes to active power control in wind farms, the question arises which turbines to derate,
and by how much. As there are plenthora of derating possibilities, this allows the introduction of
a secondary objective for active power control in wind farms. The most straight-forward secondary
objective is load minimization, explored in this chapter.
Moreover, if the demanded power signal is higher than the available power that can possibly be
extracted from the wind farm at this moment in time, then yaw-based wake steering can be used
to increase the total power produced by the wind farm, and further reduce or eliminate the power
tracking error.
A control solution is synthesized combining these components, yielding a load-minimizing active
power control solution that additionally leverages yaw-based wake steering for power maximization,
when necessary. This work has been published as an open-access article in the Elsevier Renewable
Energy journal [15]. This article is presented in the remainder of this chapter.
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a b s t r a c t

Active power control for wind farms is needed to provide ancillary services. One of these services is to
track a power reference signal with a wind farm by dynamically de- and uprating the turbines. In this
paper we present a closed-loop wind farm controller that evaluates 1) thrust coefficients on a seconds-
scale that provide power tracking and minimize dynamical loading on a farm level and 2) yaw settings on
a minutes-scale that maximize the possible power that can be harvested by the farm. The controller is
evaluated in a high-fidelity wind farm model. A six-turbine simulation case study is used to demonstrate
the time-efficient controller for different controller settings. The results indicate that, with a power
reference signal below the maximal possible power that can be harvested by the farm with non-yawed
turbines, both tracking and reduction in dynamical loading can be ensured. In a second case study we
illustrate that, when a wind farm power reference signal exceeds the maximal possible power that can be
harvested with non-yawed turbines for a time period, it can not be tracked sufficiently. However, when
solving for and applying optimized yaw settings, tracking can be ensured for the complete simulation
horizon.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The trend towards clean energy is irreversible [1]. A large part of
the clean energy we are currently generating is harvested by wind
farms that extract energy from the wind [2]. A wind farm is a
collection of wind turbines placed in each other's proximity to, i.a.,
reduce maintenance and electricity cabling costs. However, a wake
develops downstream of each turbine, which is a region that is
characterized by a flow velocity deficit and an increased turbulence
intensity [3]. Since wind turbines are placed together in a farm, the
wakes of upstream turbines influence the performance of down-
stream turbines. For example, the flow velocity deficit influences
the power production of downstream turbines [4] while an
increased turbulence intensity will increment the turbine's fatigue
loads as suggested in Refs. [5,6], which possibly can reduce the
turbine's lifetime. The objective of wind farm control is to reduce
the levelized cost of wind energy by intelligently operating the
turbines inside the farm. Subgoals may include the increase of the
farm-wide power generation, the reduction of turbine fatigue, and

the integration of energy fromwind farms with the electricity grid.
This integration is related to the provision of ancillary services. One
example is secondary frequency regulation (a subclass of active
power control) in which the objective is to have the wind farm's
power generation track a power reference signal generated by
transmission system operators, during a time span of several mi-
nutes [7]. We call this power tracking and turbines need to increase
and decrease their power output during this time span such that
tracking at a farm level is ensured. Since the power reference signal
is below the maximum possible power that can be harvested, the
tracking problem has multiple solutions. For example, one could
uprate the downstream turbines while derating the upstream tur-
bines or the other way around while generating an equal amount of
power with the farm. It is therefore possible and necessary to add,
besides tracking, another performance measure, such as the
decrease of load variations over time (dynamical loading) on the
turbines and/or the increase of available power in the farm (see e.g.,
[8]). Two actuation methods to ensure these objectives are axial
induction and wake redirection control. In the former, generator
torques and pitch angles or thrust coefficients are utilized as con-
trol variables while in the latter, the yaw angles are utilized as
control variables [9].* Corresponding author.
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Results that provide power tracking using axial induction
actuation can be found in Refs. [10e14]. More precisely [10], pro-
poses a wind farm tracking solution that additionally reduces the
turbine's tower and shaft bending moments. This controller utilizes
turbine models to illustrate the controllers effectiveness, but is not
tested in a wind farm simulation model. It is therefore uncertain
whether the proposed solution works in a wind farm model. Then
in Refs. [11,12], the authors each propose a different wind farm
power tracking solution while minimizing the axial force exerted
by the flow on the turbines. However, as stated in Ref. [6], the
dynamical turbine loading is a better measure of fatigue than static
turbine loading. In Ref. [13], the authors propose a distributed
controller providing tracking while minimizing variation in the
axial force that is exerted by the turbine on the flow. In Ref. [14],
besides tracking, a power reference distribution among the tur-
bines is also found by the controller that maximizes the available
power in the farm. Thework presented in Ref. [15] demonstrates an
optimization algorithm that provides power tracking while mini-
mizing the added turbulence intensity. However, all the above
proposed controllers except for [10] are tested in a simplified wind
farmmodel [16], keeping the question open if similar results can be
obtained when a more realistic dynamical wind farm model, such
as a Large-Eddy Simulation (LES) based wind farm model, is uti-
lized. The authors in Ref. [17] propose a tracking controller that
contains a simplified wind farm model to evaluate control signals
and the controller is tested in a simplified wind farm model. In this
work, no additional objectives are considered and also, it remains
questionable if the proposed controller will give similar results
when tested in a more realistic simulation environment. A
controller that is tested in an LES based wind farm model and
employs axial induction actuation providing power tracking can be
found in Ref. [18]. The therein solved optimization problem con-
tains dynamical wake and turbine models, but the only objective is
tracking and no constraint regarding, e.g., dynamical loading is
included. Additionally, it is questionable if the controller can eval-
uate control signals within one second, which makes the proposed
method not suitable for control on a seconds-scale. The controller
presented in Ref. [19] is also tested in an LES, but no wake model
nor constraints were taken into account. The controller provides
tracking and the wind farm power reference signal is distributed
heuristically among the turbines without taking any measure of
fatigue into account.

Time-varying yaw actuation has, to the best of our knowledge,
yet to be employed in power tracking. However, this wake actua-
tion method is utilized for the maximization of wind farm power
generation in LES based simulations [20,21], a wind tunnel [22] and
in a field test experiment [23].

From the above, we conclude that results obtained with a
closed-loop controller that provides power tracking and dynamical
load minimization in an LES based wind farm model and addi-
tionally increases the available wind farm power using yaw actu-
ation are not yet available in current literature.

Therefore, in this work, a closed-loop reference power tracking
solution is proposed in which 1) thrust coefficients that provide
wind farm power tracking while minimizing dynamical turbine
loading are evaluated for every second with a constrained model
predictive controller (MPC) and 2) yaw settings that increase the
available wind farm power can be evaluated every fifteen minutes
in the situation where the farm's power generation has to be close
to or above its upper limit, in order to increase the range of power
reference signals that can be tracked. The MPC employs a dynam-
ical wind farm model that is updated according to optimized yaw
settings and rotor-averaged flow velocities, and solves for a con-
strained optimization problem that finds a distribution of the thrust
coefficients among the turbines accordingly. This is different with

respect to the previous work presented in Ref. [24] where a control
signal distribution is imposed. When doing so, it is not possible to
change controller settings to have the controller find a control
signal distribution among the turbines that reduces, i.e., dynamical
turbine loading. In this work we investigate different controller
settings and corresponding control signal distributions that mini-
mize dynamical turbine loading. In addition to the MPC, if a refer-
ence will be above the maximum possible power extractable from
the wind with zero yaw settings, the FLOw Redirection and In-
duction in Steady-state (FLORIS) tool [25] is employed to find
optimal yaw settings that maximize the power that could be har-
vested from the wind with zero yaw settings. In addition to the
proposed control strategy, another important contribution of this
work is the controller evaluation in LES. For this, a software
framework referred to as the PALM Supervisory Controller1 is
developed that allows for programming controllers in a controller
friendly software environment and their evaluation in the PAral-
lelized Large-eddy simulation Model (PALM) [26], an LES based
wind farm model. Hence this work is more focused on controller
evaluation in a more realistic wind farm flow model. The following
enumeration summarizes the above described contributions:

1. A parameter-varying wind farm model is introduced, which can
be employed in a time-efficient controller that provides power
tracking.

2. A constrained time efficient closed-loop wind farm control
approach is introduced.

3. Power tracking and dynamical loading are performance indices
considered by the controller.

4. Axial induction and wake redirection control are employed both
to ensure wind farm power tracking.

5. Online available software is developed that allows for advanced
controller evaluation in a high-fidelity wind farm model.

The proposed framework is schematically depicted in Fig. 1.
This paper is organised as follows. In Section 2, the developed

PALM Supervisory Controller is introduced and a brief explanation
of the PALM itself is presented. Then in Section 3, a description of
the employed surrogate models is given and in Section 4, the wind
farm controller is formally introduced. Simulation results are pre-
sented in Section 5. More precisely, in section 5.3, results obtained

Fig. 1. Flowchart of the proposed control framework.

1 The developed software package is available in the public domain: https://
github.com/TUDelft-DataDrivenControl/PALMsuperController.
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with different controller settings are compared and we show that
these can influence the control signal distribution among the tur-
bines. Consequences with respect to tracking behaviour and
dynamical turbine loading are also presented. Then, in section 5.4,
we illustrate the potential of including yaw actuation when power
generation has to be close to or above its upper limit. This paper is
concluded in Section 6.

2. Simulation model

The true wind farm is replaced by the high-fidelity “PArallelized
Large-eddy simulation Model (PALM)” [26], because 1) a wind farm
is not available and 2) in a high-fidelity model, controller settings
can be compared under exactly equivalent atmospheric conditions,
which is not possible in a real wind farm. PALM is programmed in
FORTRAN, while almost all academic wind farm control algorithms
are implemented in MATLAB or Python. One of the contributions of
this work is the development of the PALM Supervisory Controller,
which provides a communication interface between PALM and
wind farm controllers implemented in MATLAB. This allows the
straight-forward evaluation of such control algorithms in a high-
fidelity simulation environment. In section 2.1, a brief summary
of PALM is given. Then in section 2.2, the PALM Supervisory
Controller is introduced and in section 2.3, the specific controller
implementation used throughout this work is given.

2.1. The PArallelized large-eddy simulation model

PALM is a meteorological model for atmospheric and oceanic
boundary-layer flows. It has been developed as a turbulence-
resolving large-eddy simulation (LES) model and is open source,
available in the public domain [27]. In the LES approach, only the
large eddies are simulated due to spatially filtering the Navier-
Stokes equations. The dynamic influence of the small turbulent
scales are consequently not resolved, but their influence is
accounted for with a so called subgrid model. PALM is based on the
unsteady, filtered, incompressible Navier-Stokes equations and the
subgrid-scale turbulent kinetic energy (SGS-TKE) model [28]. PALM
can simulate the effect of the Coriolis forces and if non-cyclic
boundary conditions are imposed, PALM can generate time-
dependent turbulent inflow data by using a turbulence recycling
method (see Ref. [26]). The resolved equations are discretized using
finite differences on a staggered grid (see Appendix Appendix A for
a more detailed discussion on employed discretization methods).
Examples of embedded models for PALM are a land surface model,
canopy model, radiation models and wind turbine models. The
latter is employed in this work. Two different turbine models are
available in PALM. The actuator disk model (ADM) [29] and the
rotating actuator disk model (ADM-R) [30] (see Refs. [31,32] for an
overview on generalized ADMs). Both these turbine models can be
utilized with the PALM Supervisory Controller that is discussed in
the following section.

2.2. PALM Supervisory Controller

The Supervisory Controller is a MATLAB/FORTRAN interface that
allows for communicating with a wind farm controller imple-
mented in MATLAB. This communication infrastructure is used for
evaluating control signals by using measurements from PALM. A
schematic representation is depicted in Fig. 2, whereY is the set of
available measurements and U the set of control signals. The
content of these sets depend on the employed turbine model, on

the assumed measurements, and on the control signals sent from
the wind farm controller. Table 1 gives all the possible options.

Note again that the developed framework is suitable for any
controller programmed in MATLAB and that the developed soft-
ware is available in the public domain [33]. Examples where it has
already been utilized can be found in Refs. [24,34]. The specific
implementation of the Supervisory Controller used in this work is
discussed in the following section.

2.3. Supervisory Controller implementation proposed in this work

In this work, PALM includes the ADM to determine the turbine's
forcing terms acting on the flow and power generation. This turbine
model is efficient due its lower requirements of grid resolution and
coarser allowed time-stepping as compared to having to resolve
detailed flow surrounding rotating blades [35]. A consequence of
choosing the ADM is that the control signals for turbine i are the
disk-based thrust coefficient C0

Ti ðtÞ following [35,36] and yaw angle
giðtÞ. Both of these signals can be used to manipulate the turbine
thrust force and power generation (see (2)). In this work, the
measurements at time t are 1) the axial force that a turbine exerts
on the flow FiðtÞ, 2) the power generated by a turbine PiðtÞ and 3)
the rotor-averaged wind velocity viðtÞ for i ¼ 1;2;…; א with א the
number of turbines. The rotor-averagedwind velocity is assumed to
be known, which could be realized by employing online estimation
of the rotor-averagedwind velocity with techniques as presented in
Refs. [37e39]. This is however outside the scope of this work. The
above defines the sets of measurements and control signals as
follows:

Y ¼ fFiðtÞ; PiðtÞ; viðtÞg; U ¼
n
C0
TiðtÞ;giðtÞ

o
;

for i ¼ 1;…; א
(1)

Fig. 3 illustrates the specific controller architecture programmed
in the Supervisory Controller. The architecture contains two closed
loops with in one loop a model predictive controller (MPC) con-
taining a dynamical surrogate model of the wind farm and in the
other loop a wind farm controller containing a steady-state surro-
gate model of the wind farm. The former regulates the thrust co-
efficients on the seconds-scale to provide power reference tracking,
while the latter is utilized when it is desired to increase the

Fig. 2. Schematic representation of the PALM Supervisory Controller. The signals Y
and U are the measurements and control signals, respectively. External conditions are,
i.e., boundary conditions.
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available power in the farm. The following section will detail both
the dynamical and steady-state surrogate models.

3. Controller models

The closed-loop controller proposed in this work contains two
different surrogate models. Both are in the feedback loop (see
Fig. 3), but work on different time scales, in different situations and
with different control signals. The first loop contains an MPC
employing a dynamical wind farm model. This controller works on
the seconds-scale and its goal is to track a wind farm reference

power signal using the filtered thrust coefficients bC 0
T ðtÞ as control

signals (see Fig. 3). The dynamical model used for this control loop
is detailed in section 3.1. The objective of the second control loop is
to, when there will not be enough energy in the farm, increase the
possible power that can be harvested by finding yaw settings gðtÞ.
This loop is working on the minutes-scale and employs the FLORIS
optimization tool, which utilizes a steady-state model that is
detailed in section 3.2.

3.1. Dynamical model

An MPC is based on the receding horizon principle in which a
constrained optimization problem is solved at each time step using
future predictions of the system and it therefore needs a dynamical
model. Additionally, we require a computationally efficient model

of the wind farm dynamics because we control on the seconds-
scale. Yet, due to nonlinear dynamics, uncertain atmospheric con-
ditions andwind farmmodel dimensions, it is challenging to obtain
such a dynamical wind farm model suitable for control. Examples
of computationally expensive dynamical control-oriented wind
farmmodels can be found in Refs. [18,36]. However, axial induction
based wind farm power tracking results that are presented in
Refs. [19,24] indicate that flow dynamics could be neglected and a
wind farm can be modelled as א uncoupled subsystems, each sub-
system consisting of a dynamical turbinemodel that is based on the
actuator disk theory. While wake effects are neglected in the sur-
rogate dynamical model, the turbine dynamics are still affected by
the local flow conditions. Hence, the turbine models are updated
according to the local rotor-averagedwind velocity, which in reality
may ormay not be affected by other turbines inside the farm. In this
work, the following model for turbine i is employed

PiðtÞ ¼
pD2

8
ðviðtÞcos½giðtÞ�Þ3bC 0

TiðtÞ;

FiðtÞ ¼
pD2

8
ðviðtÞcos½giðtÞ�Þ2bC 0

TiðtÞ;

C0
Ti ðtÞ ¼ t

dbC 0
TiðtÞ
dt

þ bC 0
TiðtÞ;

(2)

for i ¼ ,א;…;2;1 with PiðtÞ the generated power, FiðtÞ the axial force
that flow exerts on turbine i, C0

Ti ðtÞ the control signal, bC 0
Ti ðtÞ the

first-order filtered control signal, giðtÞ the yaw angle and viðtÞ the
rotor-averaged wind speed perpendicular to the rotor. Notice that
viðtÞ is, i.a., influenced by the upstream turbine settings through
wake propagation. We furthermore have t2Rþ, the time constant
of the filter that acts on the control signal such the applied control
signal is smooth. Temporally discretizing (2) at sample period Dt
using the zero-order hold method yields the following state-space
representation of turbine i

xi;kþ1 ¼ Aixi;k þ Bi
�
vi;k;gi;k

�
C0
Ti;k; yi;k ¼ xi;k; (3)

with

Ai2ℝ3�3; Bi
�
vi;k;gi;k

�
2ℝ3; yi;k2ℝ3;

C
0
Ti;k

2ℝ; xTi;k ¼
�
Fi;k Pi;k bC 0

Ti;k

�
2ℝ3:

(4)

Lifting the state variables of the turbines and adding the wind
farm power error signal to the state variable results in the following
wind farm state-space model:

Fig. 3. Proposed closed-loop control framework with measurements yðtÞ and power
reference signal for the farm Pref ðtÞ. The control signals are the filtered thrust co-
efficients bC 0

T ðtÞ and yaw angels gðtÞ. The vertical arrow connecting the MPC and FLORIS
represents the information exchange between the different parts of the controller.

Table 1
Available set of measurements Y and control signals U for the different turbines models.

PALM þ ADM

Y wind velocities, generated turbine power, axial force
U thrust coefficient, yaw angle

PALM þ ADM-R

Y wind velocities, generated turbine power, axial force,
generator speed

U generator torque, pitch angle, yaw angle
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xkþ1 ¼ Axk þ Buðvk;gkÞC0
Ti;k þ BrPrefk ; yk ¼ xk; (5)

which is a linear parameter-varying system due to the varying
matrix Bðvk;gkÞ. Furthermore we have:

xTk ¼ � x1;k x2;k … xא;k ek
�
2R3אþ1;

vTk ¼ � v1;k v2;k … vא;k
�
2R3א

C0
Ti;k ¼

�
C0
T1;k C0

T2;k … C0
Tא ;k

�
;T2Rא

bC 0
T ;k ¼

� bC 0
T1;k

bC 0
T2;k …

bC 0
Tא ;k

�
;T2Rא;

ek; P
ref
k 2R

A1 ¼ blkdiagðA1;A2;…;AאÞ2R3א�3א;

A2 ¼ ð0 �1 0 … 0 �1 0 Þ2R1�3א;

A ¼
 
A1 0
A2 0

!
;

B1uðvk;gkÞ ¼ blkdiag
�
B1
�
v1;k;g1;k

�
;

B2
�
v2;k;g2;k

�
;…;Bא

�
vא;k;gא;k

��
2R3א�א;

B2u ¼ ð0 0 … 0 0 Þ2R1א�; Bu ¼
 
B1uðvk;gkÞ

B2u

!
;

Br ¼ ð0 0 / 0 1 ÞT2R3אþ1�1;

where blkdiag($) denotes block diagonal concatenation of matrices
or vectors. Furthermore we have the wind farm power reference

signal Prefk and tracking error signal ek. The model described above
will be employed in the controller part presented in section 4.1.

3.2. Steady-state model

For the evaluation of the steady-state yaw angles that increase
the possible power that can be harvested, the FLOwRedirection and
Induction in Steady-state (FLORIS) tool is utilized, which is a low-
fidelity steady-state wind farm model and it can be used for the
purpose of wind farm control, offline analysis and layout optimi-
zation. The most recent version is based on the analytical wake
model inspired by Bastankhah and Port�e-Agel [40] and employed in
this work. For brevity, the focus in this section lies on the far-wake
model and the following formulation has not yet been published
elsewhere.

All single wake equations described here are in the wind-
aligned frame, with x0i aligned with the wind, y0i the lateral
component, and z0i the vertical component, all centred at the hub of
turbine i (see Fig. 4).

For a single wake, the near-wake region is modelled as a cone

with its base at the rotor plane, and its tip at a distance x0i
down-

stream of turbine i. That is

x0i
¼

ffiffiffi
2

p
D

2 $cos
�
gssi
�
$

	
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� CTi

q 

a$Ii þ b

	
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� CTi

q 
 ; (6)

where CTi is the time-averaged2 thrust coefficient of turbine i. The
steady-state yaw angle is definedwith respect to thewind direction
and defined as gss

i . This variable is a decision variable in the opti-

mization to be defined in section 4.2. Note clearly that CTi is a static
value during the optimization. However, tracking a wind farm
reference will be achieved when varying the thrust coefficient over
time hence this assumption might seem not realistic. However,
wake deflection mostly depends on wind direction and yaw set-
tings, and to a much lesser extend on the thrust coefficient and
therefore, this is assumed to be constant in the model defined in
this section. In (6) we also have two tuning parameters a and b. A

relation between CTi and C
0
Ti is defined as

CTi ¼
4
	
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� CTi

q 

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� CTi

q : (7)

The local turbulence intensity in front of turbine i, Ii, is calcu-
lated as a squared summation of the atmospheric turbulence in-
tensity I∞ and the added turbulence intensities from upstream
turbines Iþj . Mathematically, this is defined as

Ii ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXא
j¼1

 
Aj
w

1
4pD

2
Iþj

!2

þ I2∞

vuuut ; (8)

with Aj
w the relative overlap area between the rotor of turbine i and

wake of turbine j. Notice that the sum is taken over all turbines

since Aj
w is zero for turbines downstream of turbine i. Furthermore,

Iþj ¼ ta$a
tb
j $I

tc
∞$

 
Dxjturb

D

!td

; (9)

Potential core

Fig. 4. Schematic representation of a wake evaluated with the steady-state model. The figure is taken from Ref. [40] and adapted.

2 The time over which is averaged is proposed to be the past fifteen minutes,
equal to the period that new optimal yaw angles are evaluated and can be applied
when necessary.
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whereDxjturb the stream-wise distance between the turbines i and j,
and aj the time-averaged axial induction factor with relation

C
0
Tj ¼

4aj
1� aj

(10)

The variables ta, tb, tc, and td are considered as tuning parameters.
For x0i � x0i

, the wake is modelled as a two-dimensional
Gaussian velocity deficit in y0i- and z0i-direction, symmetrical
around a centreline. This centreline lies in the horizontal plane at
hub height, displaced in y0i-direction from the ith turbine hub by dfi ,
as

dfi ¼ tan½qi�x0i
þ qi
5:2

$
�
C2
0i
� 3e1=12C0i

þ 3e1=3
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sy0i

sz0i

ky$kz$CTi

s
$ln
��1:6þ

ffiffiffiffiffiffiffi
CTi

q ��
1:6Ssi �

ffiffiffiffiffiffiffi
CTi

q �
�
1:6�

ffiffiffiffiffiffiffi
CTi

q ��
1:6Ssi þ

ffiffiffiffiffiffiffi
CTi

q �#þ dri :

(11)

In this equation, qi is the initial deflection angle in radians,
calculated as

qiz
0:3gssi
cos
h
gssi

i	1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� CTicos

h
gssi

ir 

: (12)

Furthermore, C0i
¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� CTi

q
, ky and kz are linear wake

expansion coefficients similar to that in Ref. [41], and Ssi is defined

as Ssi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsyiszi Þ=ðsy0i

sz0i
Þ

q
, with syi and szi the standard de-

viations of the Gaussian in y0i- and z0i-direction, respectively, both a
linear function of x0i. They are calculated as

syi ¼ sy0i
þ
�
x0i � x00i

�
ky; with sy0i

¼ D

2
ffiffiffi
2

p cos
�
gssi
�
; (13)

szi ¼ sz0i
þ
�
x0i � x00i

�
kz; with sz0i

¼ D

2
ffiffiffi
2

p ; (14)

Further, dri is the wake deflection induced by the rotation of the
blades, approximated using a linear function, by dri ¼ ad$Dþ bd$x

0
i,

with ad and bd tuning parameters. The steady-state wind speed Ui
in the far-wake region at some location ðx0i;y0ii;z0iiÞ, with x0ii � x00i

, and

with its origin at the hub of turbine i, is now defined as

Ui
�
x0i; y

0
i; z

0
i

�
U∞

¼ 1�
 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sy0i

sz0i

syiszi
CTi

s !
$exp

0B@
�
y0i � dfi

�2
2s2yi

þ
�
z0i
�2

2s2zi

1CA;

with U∞ the free-stream wind speed, which is the mean longitu-
dinal wind speed in front of thewind farm. Furthermore, the power
capture in steady-state of turbine i is calculated as

Pssi ¼
	
pD2

8



$
�
vssi cos

�
gssi
��3

$C
0
Ti ; (15)

with vssi the rotor-averaged stream-wise wind speed in steady-
state. This quantity is calculated by integrating the effect of mul-
tiple wakes over the turbine rotor, as

vssi ¼ U∞ð1� aiÞ

0B@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j¼1

א
 

Qj
1
4pD

2

!2
vuuut

1CA; (16)

Qj ¼
ðD=2
0

ð2p
0

0@rj

0@1�
Uj

�
rj; bj

�
U∞

1A1Adbj drj; (17)

where (rj, bj) is the polar coordinate representation of ðy0j; z0jÞ over
the rotor of turbine j. Note that Qj ¼ 0 for the wakes of downstream
turbines since Ujðrj; bjÞ ¼ U∞ for x0j <0. The above described model

will be employed in the controller as described in section 4.2.

4. Control strategy

The proposed closed-loop controller executes two tasks. The
first task is executed on the seconds-scale and solves a finite-time
constrained predictive optimization problem using the model
defined in section 3.1 assuming full knowledge of the powers, axial
forces and rotor-averaged wind velocities. The main objective is to
provide power tracking on a farm level. The second task is executed
on a 15-min scale and consists of an optimization procedure using
the steady-state surrogate model defined in section 3.2 assuming
full knowledge of the measured wind direction. The main objective
is to increase the possible power extractable from the wind by
finding optimal yaw settings. However, the second task will only be
executed when the future wind farm reference signal will be above
the maximal possible extractable wind farm power such that un-
necessary yaw actuation and consequently potential additional
loading [42] will not occur. If more than the maximal possible
extractable wind farm power with zero yaw settings is demanded
from the farm, optimal yaw settings can be evaluated and applied
with the additional second loop. The first and second task will be
detailed in section 4.1 and section 4.2, respectively.

4.1. Axial induction control for power tracking

The aforementioned MPC is stated to solve the following opti-
mization problem from time k0 until the prediction horizon k0 þ Nh

min
C 0
T ;k

Xk0þNh

k¼k0

eTkQek þ ðFk � Fk�1ÞTSðFk � Fk�1Þ (18a)

s:t: xkþ1 ¼ Axk þ Bu
�
vk0 ;gk0

�
C0
T ;k þ BrPrefk ; Pk � Pmax; (18b)

C0
T ;min � C0

Ti;k � C0
T ;max;

���C0
Ti;k � C0

Ti;k�1

���<dC0
T ; (18c)

with

S. Boersma et al. / Renewable Energy 134 (2019) 639e652644

D2.5 - Integrated wind farm controllers public

Copyright CL-Windcon Contract No. 727477 Page 170



Fk ¼
�
F1;k F2;k … Fא;k

�T
2ℝא Pk ¼

�
P1;k P2;k … Pא;k

�T
2ℝא;

Pmax ¼
�
Pav1;k0 Pav2;k0 … Pavא;k0

�T
2ℝא;ek ¼ Prefk �

Xא
i¼1

Pi;k2ℝ;

and

Pavi;k0 ¼
pD2

8

�
vi;k0 cos

h
gi;k0

i�3
C0
T ;max2R: (19)

Furthermore, C0
T ;max; C

0
T ;min, dC

0
T and Pmax represent the upper

and lower bounds on the thrust coefficients, its variation and upper
bound on the turbines power generation, respectively, and gk0 and
vk0 the yaw angles and measured rotor-averaged wind velocity at
time k0, respectively. Note that a constraint on the thrust co-
efficients is already an indirect constraint on the turbine power
signals. However, this generalized framework is beneficial, as it will
allow us to investigate different constraints on the power genera-
tion of each turbine in future work. We furthermore have the
weighting matrices

Q ¼ q2R; S ¼ Iא$s2Rא�א (20)

with q; s2R controller tuning variables. In fact, by tuning each
weight one can increase or decrease the importance of the corre-
sponding term in the cost function. More specifically, by increase
the weight s relative to q, the controller puts more effort in mini-
mizing the dynamical turbine loading. We would like to stress here
that the optimization problem defined in (18) tries to find a dis-
tribution of control signals among the turbines, such that the
tracking error and dynamical loading are minimized. This is
different with respect to the work presented in Ref. [24] in which a
distribution is imposed before the optimization routine. Clearly, by
not imposing a distribution manually as done in this work, the
controller is given relatively more freedom to find control signals
that minimize tracking error and dynamical loading.

4.2. Axial induction control for power tracking with optimized yaw
settings

The optimization algorithm described in this paragraph relies on
the FLORIS tool described in section 3.2. In practice, first it is pre-
dicted whether the wind farm reference can be tracked for the
upcoming 15min.3 A method to do this could be by taking the
maximum value among the upcoming reference signal over a
15min horizon and then estimate the available power using an
algorithm such as presented in Ref. [43]. In this work we are not
investigating such a method, but if it is possible to track the wind
farm reference signal over the upcoming 15min, then the turbines
are yawed in alignment with the mean wind direction (zero yaw
settings) so that no unnecessary yaw actuationwill occur. However,
when it is estimated that tracking will not be ensured, first the
steady-state surrogate model should be adjusted to match the
present atmospheric conditions inside the farm such as for example
demonstrated in Ref. [44]. These atmospheric conditions such as
wind direction could be estimated using, e.g., SCADA data and lidar
measurements [34]. Subsequently, the following optimization
problem is solved following an interior point method to address the
nonlinearity and nonconvexity of the problem:

g� ¼ argmin
gss

 
�
Xא
i¼1

Pssi ðgssÞ
!
; (21a)

s:t: � 25+ � gssi � 25+; for i ¼ 1;…; ;א and ð15Þ (21b)

where gss ¼ �gss
1 gss

2 / gssא
�T . The yaw angle is constrained to

suppress the increase in structural loading for strongly yawed
turbines [42]. The optimal yaw settings, g�, are then distributed to
the turbines and turbine models (see (2)), and maintained for a
fifteen minute period, upon which the above described cycle is
repeated.

5. Simulation results

PALM simulation results are all of a neutral atmospheric
boundary layer and will be discussed in this section. In all simu-
lation cases, the controller is applied to a wind farm with specifi-
cations as described in Table 2.

See Table C.3 for the variable definitions. The sample period
Dt ¼ 1 [s] is chosen such that the Courant condition [45] holds. The
time constant t is chosen following [46] and as a consequence, no
fast dynamics such as structural vibrations are captured with the
turbine model. However, it results in smooth control signals that
are fed to the turbines in PALM. The prediction horizon Nh is found
after tuning the controller. The influence of t; Nh is not further
investigated in this work. The value for C0

T ;max corresponds to the
Betz-optimal value and hence no overinductive axial induction
control is considered. Furthermore, C0

T ;min ¼ 0:1 indicating that we
do not allow turbines to shut down completely, which is common
practice in wind farms. The bound on the thrust coefficient varia-
tion dC0

T ¼ 0:2 is set such that turbines can not de- and uprate
instantaneously, but it also provides an upper and lower bound on
the maximum allowable dynamical loading (see (2)).

The topology under consideration is illustrated in Fig. 5 and
contains heavily waked wind turbines due to the fact that turbines
are aligned with the mean wind direction. Although farms are
designed such that the occurrence of this situation is minimized, it
remains an interesting case study to investigate farm dynamics in
these worst case scenarios [47]. This section is organised as follows.
Firstly in section 5.1, two performancemeasures are introduced such
that controllers with different settings can be evaluated. Secondly, in
section 5.2, a brief summary on how PALM is initialized is given. In
section 5.3, we investigate the influence of the controller parameter
s (see (20)) on the tracking performance, the dynamical loading and
consequently the differences between the found control signal
distributions. Then in section 5.4, we illustrate by example that a
wind farm power reference signal that temporarily exceed the
maximal possible extractable wind farm power with zero yaw can
be tracked when yawing turbines in an optimized way.

5.1. Performance measures

In order to evaluate the controller performance under different
settings, two criteria are introduced.

dFi ¼
XN
k¼1

�
Fi;k � Fi;k�1

�2
; for i ¼ 1;…; א and;

dF ¼
Xא
i¼1

dFi:

(22)

The turbine performance index, dFi, represents the turbine's

3 The necessity of using optimized yaw settings or non-yawed turbines to track
the future reference is evaluated every 15min, but this time-span can be adapted
according to atmospheric conditions. Additionally, it is assumed that the reference
is known for the upcoming 15min throughout this work.
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force variations and the quantity dF represents the force variations
on a farm level, both evaluated over the complete simulation ho-
rizon. Clearly, a lower performance index indicates less force vari-
ations over the simulation horizon.

5.2. Simulation initialization

Simulations are initialized as follows: a fully developed flow field
is generated in the precursor such that the free-streamwind speeds
are U∞ ¼ 8 [m/s] and V∞ ¼ W∞ ¼ 0 [m/s] in the longitudinal,
lateral and vertical direction, respectively, and a turbulence intensity
in front of the farm of approximately 6% at hub-height in front of the
wind farm (see Appendix B for definition of turbulence intensity
used in this work). Then, for the specific topology considered in this
work, the flow is propagated N seconds in advance with C0

Ti ;k ¼ 2
(corresponding to the Betz-optimal value) and gi;k ¼ 0 for i ¼ 1;…; א

for the complete N seconds so that the wakes are fully developed.
Here, non-cyclic boundary conditions are imposed in the stream-
wise direction, i.e., a turbulent inflow boundary and an open
outflow boundary on the opposite side are imposed. The turbulent
inflow at one boundary is generated by using a turbulence recycling
method [26]. For the flow quantities, Dirichlet conditions are used at
the inflow and radiation conditions at the outflow. In the cross
stream-wise direction, cyclic boundary conditions are imposed and
Dirichlet conditions as bottom and top boundary conditions. The
flow field obtained after these N seconds is utilized as initial flow
field (see Fig. 5) for the simulation results presented in this work.

The greedy power ðPgreedyÞ is defined as the time-averagedwind
farm power harvested with C0

Ti;k ¼ 2 and gi;k ¼ 0 for i ¼ 1;…; א and
N seconds of simulation starting with the previous described initial
flow field. With unyawed turbines, a wind farm can potentially
harvest above the Pgreedy threshold for only a relatively short period
of time. Clearly, this period is defined by the wake propagation
time. In this work, Pgreedy is defined as the maximal possible
extractable wind farm power.

5.3. Power tracking while minimizing dynamical turbine loading

In this section, the controller parameter s is varied so that its

influence on the previously defined performance measures and
control signal distribution can be studied. The value of controller
parameter q ¼ 104 is found after tuning such that tracking is
ensured. The wind farm power reference signal is defined as:

Prefk ¼ 0:7Pgreedy þ 0:2PgreedydPk; (23)

with dPk a normalized “RegD” type AGC signal [48] coming from an
operator and Pgreedyz7:5 [MW]. As can be seen in (23), the refer-
ence will never exceed Pgreedy during the simulation period and
hence turbines are in derate mode for the complete simulation
period. Consequently, the problem described in section 4.1 is
exclusively solved to provide power tracking, and the problem
described in section 4.2 is not due to the fact that it is possible to
track the reference signal given in (23) with unyawed turbines over
the complete simulation horizon.

In Fig. 6, it can be observed that tracking is ensured for all
presented cases and hence we can conclude that, for the presented
cases, the controller parameter s does not have a significant impact
on the tracking performance.

However, in Fig. 7, it can be seen that the performance index dF
as defined in (22) reduces when s increases indicating that
dynamical loading can be reduced on a farm level. This is expected
since dF can be found in the controller's objective function as
defined in (18). However, Fig. 7 also depicts the turbine's perfor-
mance indices as defined in (22), and it can be observed that,
although dynamical loading on a farm level is reduced, it can in-
crease for specific turbines in the farm (see for example turbine 5).
We note, but do not show, that for s>50 no significant changes in
the dynamical loading can be observed.

Furthermore, from Fig. 8 it can be concluded that the control
signal distribution significantly changes for a varying controller
parameter s. In fact, an increasing penalty on the dynamical loading
results in a decrease of the downstream thrust coefficients, while
upstream turbines receive increased thrust coefficients. The latter
results in a decreased rotor-averaged flow velocity and its variation,
which reduces the fatigue loading (see (2)). In other words, the
dynamical loading of the upstream turbines is reduced when
increasing the weight s, while such a simple relation can not be
observed for the downstream turbines. This could possibly be due

Table 2
Summary of the simulation set-up.

Lx � Ly � Lz 15:3� 3:8� 1:3 ½km3� D;zh 120, 90 [m]

Dx� Dy� Dz 15� 15� 10 [m3] Turbine spacing 5D� 3D [m]
Dt 1 [s] U∞;V∞;W∞ 8;0;0 [m/s]
N;t;Nh 850, 5, 10 [s] TI∞ 6%
C0
T ;max;C

0
T ;min;dC

0
T 2, 0.1, 0.2

Fig. 5. Initial longitudinal flow velocity component at hub-height. The flow is going from west to east and the black vertical lines represent the wind turbines.

S. Boersma et al. / Renewable Energy 134 (2019) 639e652646

D2.5 - Integrated wind farm controllers public

Copyright CL-Windcon Contract No. 727477 Page 172



to the complex wake dynamics that influence the dynamical
loading of the downstream turbines. However, Fig. 7 indicates that,
on a farm level, the dynamical loading is reduced when increasing
s, which is expected since the weight s increases the penalty on the
sum of the individual turbine dynamical loading (see Eq. (18)).
Fig. 9 additionally depicts the turbine power signals for different
controller settings. We observe that in all cases, the upstream tur-
bines produce relatively the most power since the wind speed in

front of these turbines is the highest and that an increase in s results
in incremental power production of the upstream turbines.

5.4. Power tracking with optimized yaw settings

In this section, the controller is evaluated with the following
reference signal

3

4

5

6

3

4

5

6

0 100 200 300 400 500 600 700 800
3

4

5

6

Fig. 6. Wind farm power and reference for different controller settings s.

Fig. 7. Normalized performance indices as defined in (22) for different controller settings s.
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Prefk ¼ 0:8Pgreedy þ 0:5PgreedydPk: (24)

Observe that, for a period, more power is demanded from the
farm than the averaged power harvested under greedy control.
Consequently, the optimization problem described in section 4.2 is
solved firstly for the measured wind direction and topology under
consideration to increase the maximum possible power that can be
harvested by the farm. Solving the problem given in (21) takes
approximately 30 s on a regular notebook and single core. The
optimized yaw settings were found to be

g�
k ¼ ð�24:3 �24:3 �16:2 �16:2 0 0 ÞT ½deg�: (25)

These yaw settings are kept constant throughout the simulation
case presented in this section and applied instantaneously in the
initial flow field. See Fig. 10 for instantaneous longitudinal flow ve-
locity components at hub-height. Note that we assume no deviation
of the mean wind direction and free-stream wind speed during the
simulation period since we update yaw settings every 15min.

Secondly, the problem described in section 4.1 is solved during
the complete simulation horizon and power tracking is provided

Fig. 8. Wind farm control signals for different controller settings s. The arrow on the left indicates the wind direction.

Fig. 9. Turbine power signals for different controller settings s. The arrow on the left indicates the wind direction.
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with yawed turbines. On a regular note book and single core, it
takes approximately 0.07 s to solve the problem described in sec-
tion 4.1. Hence, due to the fact that the sample time is chosen to be
one second, online power tracking can be achieved. The controller
parameters q; s were found after tuning such that tracking is
ensured and set to q ¼ 104; s ¼ 25. Note that during the simulation
time, the wake mainly alters due to the changed yaw settings,
which makes it extra challenging for the MPC to track the reference
signal. Fig. 11 depicts simulation results of two simulations.

In the top plot, tracking results are depicted that are obtained
with unyawed turbines. Here it can be seen that indeed, the
reference can not be tracked sufficiently over the complete simu-
lation horizon, which is due to the absence of sufficient wind po-
wer. Interestingly, from t ¼ 300 [s] to t ¼ 450 [s], the wind farm
power produces more than Pgreedy, which is due to the fact that
wakes of upstream turbines are not fully developed yet. However,
when the wake changes arrive at downstream turbines, the avail-
able wind power decreases and the power production converges to
Pgreedy from t ¼ 450 [s] to t ¼ 520 [s]. In the below plot, it can be
observed that power tracking can be ensured over the complete
simulation horizon, which is due to the fact that the yawed turbines
increase the possible power that can be harvested by the farm.

Fig. 12 depicts the thrust coefficients that are found by the MPC
and it can be seen that in the non-yawed turbine case (i.e., gi;k ¼ 0),
the thrust coefficients reach their boundaries from t ¼ 300 [s] to
t ¼ 450 [s] and sufficient power tracking can not be ensured during
this timespan. However, when the found optimized yaw settings g�

k
are applied, the wind speed is higher in front of the upstream
turbines hence more power can be harvested with these turbines.
In order to track the reference, it is therefore possible to reduce the
thrust coefficients.

6. Conclusions

Ancillary services in wind farms are important to increase the
wind power penetration in the energy market. One example is
secondary frequency regulation in which the objective is to have
the wind farm's power generation track a power reference signal
generated by transmission system operators during a time span of
several minutes. Due to the uncertain wake dynamics, a closed-
loop control solution with a dynamical surrogate model is
needed to provide this so called power tracking. Since dynamical
wake models are generally complex, approximations are required
such that the surrogate model can be employed in a controller that

Fig. 11. Wind farm tracking results of the controller with gi;k ¼ 0 (above) and optimized settings g�
k (below).

Fig. 10. Instantaneous longitudinal flow velocity component at hub-height at t ¼ 600 [s]. The flow is going fromwest to east and the black vertical lines represent the wind turbines.
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should work in a real time application. In this paper, we present
such a dynamical surrogate wind farm model and utilize it in a
model predictive controller that provides power tracking, and
additionally is able to reduce the dynamical loading on a farm level
by finding for each simulation second new optimized thrust co-
efficients in approximately 0.07 s. To increase the possible range of
traceable power signals, wake steering is used when future refer-
ence signals exceed the maximum power that can be harvested
with non-yawed turbines. Optimized yaw settings that maximize
the possible power that can be harvested are then found by
employing a steady-state surrogate model and set for a simulation
period of fifteen minutes. The necessity of applying optimized or
zero yaw settings to track the future reference can then be re-
evaluated. Note that the optimized yaw settings maximize the
possible power that can be harvested, which can result in unnec-
essary turbine yawing. In future work, a more sophisticated
method could be incorporated in the controller for determining
yaw settings that exactly increase the possible power that can be
harvested to the maximal value of the future reference. In this
paper, we give an example where the reference can not be tracked
sufficiently when turbines are non-yawed, while power tracking is
ensured when optimized yaw settings are applied. The controller
is evaluated in a high-fidelity simulation environment for which
software is developed that allows for programming controllers in
MATLAB and evaluating these in a high-fidelity simulation envi-
ronment. In future work, an analysis on multi-scale dynamics in
the high-fidelity simulation environment is necessary to better
understand the wind farm flow dynamics under the proposed
control strategy. This could possibly lead to a more efficient
controller performance.
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Appendix A. PALM discretization

The model domain in PALM is spatially discretized using finite
differences and equidistant horizontal and vertical grid spacing ðDx;
Dy;DzÞ. A staggered grid is used, where scalar quantities are defined
at the center of each grid volume, and velocity components are
shifted by half a grid width in their respective direction so that they
are defined at the edges of the grid volumes. It is therefore possible
to calculate the derivatives of the velocity components at the center
of the volumes (same location as the scalars). Using a similar
argument, derivatives of scalar quantities can be calculated at the
edges of the volumes. In this way it is possible to calculate de-
rivatives over only one grid length. The Navier-Stokes equations are
discretized using an upwind-biased fifth-order differencing
scheme in combination with a third-order RungeKutta time-
stepping scheme [26].

Appendix B. Turbulence intensity

The turbulence intensity in font of the wind farm TI∞ is
computed as follows: take the longitudinal flow velocity at hub-
height for the area defined by the vertices x2ð30;150Þ [m] and y2
ð375;525Þ [m] for L seconds. Define this local time-varying flow
field as ulk. Define:

u0k ¼ ulk � mu with mu ¼ 1
L

XL
k¼1

ulk: (B.1)

Using the above to compute the turbulence intensity yields:

TI∞ ¼ ms

�
rms

�
u0k
�
$m�1

u

�
; (B.2)

with rms ðu0kÞ the root-mean-square level of u0k along the time axis
and msð$Þ the spatial average in the x- and y-direction.

Fig. 12. Control signals with gi;k ¼ 0 and optimized settings g�
k .
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Appendix C. Nomenclature
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9.3 Conclusion

Fundamentally, the work presented in this literature tackled a very important problem: the integra-
tion of electricity fromwind with the electricity grid. A closed-loop (feedback) solution was devised to
enable power reference tracking at timescales of 1 to 10 seconds, while minimizing the dynamic axial
loading on the turbine rotors, which was assumed as a surrogate for fatigue loading. The strength
of this feedback control solution was demonstrated in high-fidelity, large-eddy simulation, showing
excellent performance.
Additionally, situations may arise where a wind farm cannot provide the energy that is demanded
from it by a transmission system operator. To increase the power that the wind farm can extract,
yaw-based wake steering is used by leveraging the FLORIS surrogate model, previously described
in Chapter 4, among others. The concept of wake steering has not yet been integrated sufficiently
for real-time operation, since one would only want to yaw the turbines if the demanded power will
exceed the available power in the near future. However, in this article, yaw-based wake steering was
applied constantly, rather than toggled.
Future work should focus on the further intergration of these techniques, and dealing with more
realistic, time-varying inflow conditions.
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10 CONCLUSIONS

This document revolved around the synthesis of integrated control solutions to improve the effi-
ciency in wind turbine and wind farm operation. This work continues further on previous work [55]
by unifying single-objective and single-method control solutions proposed in an earlier deliverable,
moving towards realistic control solutions that attempt to push the envelope of operational effi-
ciency. Several promising solutions were proposed in this document.
In Chapter 3, the effects of axial induction control, wake redirection control, and the combination of
both were explored in detail. It became clear that wake redirection control has the highest potential
in increasing the energy extraction of wind farms. In some situations, axial induction control may
further increase the power production, but this depends on the wind farm layout and the turbine
types. Generally, FLORIS predicted gains of up to 15% − 20% using wake redirection and gains of
0%− 5% using axial induction control.
In Chapter 4, a controller combining axial induction control and wake redirection control leverag-
ing FLORIS was further matured and tested. High-fidelity simulation results show that the surrogate
model FLORIS does not predict any gains in energy yield for axial induction control, and the controller
thereby exclusively employs wake steering for power maximization. Furthermore, the controller was
then robustified using a theoretical measure of observability, which ensures that only the param-
eters that can be estimated, are estimated. Finally, an integrated closed-loop control solution was
proposed and tested in high-fidelity simulation using varying inflow conditions, showing an increase
of 1% to 9% in energy extraction compared to greedy operation.
In Chapter 5, a lidar-assisted feedforward-feedback wind farm controller was explored. This con-
troller employs FLORIS to optimize the turbine yaw setpoints, and then uses lidar measurements in
a feedback setting to correct the yaw angle and thereby achieve the desired wake displacement, ef-
fectively accounting for model discrepancies. The controller showed an increase in energy extraction
of up to 17% in high-fidelity simulation compared to a baseline wind farm control strategy. In future
work, the proposed controller should be tested for changing inflow conditions.
In Chapter 6, a feedforward control solution was presented that integrates turbine derating to bal-
ance mechanical loads with energy extraction in the wind farm. To do so, a loads database was
constructed through a large number of aero-elastic simulations. This database was integrated in
the FLORIS surrogate model to provide predictions on the turbine fatigue loads and power produc-
tion as a function of the inflow conditions. A solution was also provided for the estimation of such
ambient conditions using upstream turbine measurement data, which is an essential component to
any model-based wind farm control solution. The supercontroller was tested in the medium-fidelity
simulation environment FAST.Farm for a 3x3 wind farm. The results show how the integrated con-
trol solution trades off energy extraction and turbine fatigue loading, revealing to be a promising
application of this technology.
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In Chapter 7, an axial-induction-based wind farm control solution was depicted for an onshore wind
farm, to be tested through real-world experimentation. While axial induction control has often ap-
peared impractical for power maximization [13], LongSim does predict increases up to the order
of 10% in energy extraction by derating several upstream turbines for conditions with large wake
losses (i.e., at a low turbulence intensity and for the right wind direction). Moreover, special attention
was paid towards the shift from steady control solutions to a more realistic, dynamic environment,
thereby rendering the controller one of the most prominent wind farm control solutions presented
in this work.
In Chapter 8, it was concluded that the proposed model-free approach for axial induction control
in pursuit of power maximization previously presented [55] was not deemed feasible. This control
solution was therefore discontinued.
In Chapter 9, a wind farm control solution for active power control was proposed to track a reference
power signal on the 1-to-10 seconds timescale while minimizing the axial force fluctuations on each
turbine rotor. This shows to be a very promising application and an absolute necessity aswind energy
plays a larger role in national electricity grids. Moreover, this chapter showed initial work on the
inclusion of wake steering for power maximization when necessary, though more research must be
spent on its efficient integration to avoid turbine yaw misalignment when it is not necessary.
Looking ahead, in workpackage 3 of this project, several of these control algorithms will be tested on
various levels of fidelity; in high-fidelity simulation, wind tunnel experiments and/or field campaigns
on an onshore wind farm in Sedini, on the island of Sardinia, Italy. This should further verify, validate
and increase the trust in these control solutions.
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