Methodology for active load control

<table>
<thead>
<tr>
<th>Deliverable No.</th>
<th>Work Package No.</th>
<th>Task/s No.</th>
<th>Status</th>
<th>Dissemination level</th>
<th>Due date deliverable</th>
<th>Deliverable version</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2.2</td>
<td>WP2</td>
<td>T2.2/T2.3</td>
<td>Draft Final</td>
<td>PU-Public</td>
<td>2018-02-28</td>
<td>CL-Windcon_D2.2_DraftFinal_ActiveLoadControl</td>
</tr>
</tbody>
</table>

Wind Farm Flow control technologies and algorithms

Subtask 2.3.1 Wake estimators for partial wake overlap
Subtask 2.2.2/2.2.3 Closed loop wake steering
Subtask 2.3.4 Reliability enhancing technologies

Draft/Draft Final/Final

PU-Public

https://www.iprhelpdesk.eu/kb/522-which-are-different-levels-confidentiality

2018-02-28

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 727477
DOCUMENT CONTRIBUTORS

<table>
<thead>
<tr>
<th>Deliverable responsible</th>
<th>Contributors</th>
<th>Organization</th>
<th>Reviewers</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inhar Andueza</td>
<td>IK4-IKERLAN</td>
<td>Alberto Zasso</td>
<td>Politecnico di Milano</td>
</tr>
<tr>
<td></td>
<td>Iker Elorza</td>
<td></td>
<td>Alessandro Croce</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stefano Cacciola</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steffen Raach</td>
<td>University of Stuttgart</td>
<td>Ursula Smolka</td>
<td>Ramboll</td>
</tr>
<tr>
<td></td>
<td>Johannes Schreiber</td>
<td>Technische Universität München</td>
<td>David Astrain</td>
<td>CENER</td>
</tr>
<tr>
<td></td>
<td>Filippo Campagnolo</td>
<td></td>
<td>Irene Eguinoa</td>
<td></td>
</tr>
</tbody>
</table>

DOCUMENT HISTORY

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2018-02-19</td>
<td>First draft</td>
</tr>
<tr>
<td>2.0</td>
<td>2018-02-28</td>
<td>Final draft with corrections after internal review</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EXECUTIVE SUMMARY</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>INTRODUCTION</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>WAKE ESTIMATORS FOR PARTIAL WAKE OVERLAP DETECTION</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>OBJECTIVES</td>
<td>10</td>
</tr>
<tr>
<td>3.2</td>
<td>CONCEPT OF SECTOR EFFECTIVE WIND SPEED ESTIMATION</td>
<td>10</td>
</tr>
<tr>
<td>3.3</td>
<td>CONCEPT OF WAKE DETECTION</td>
<td>11</td>
</tr>
<tr>
<td>3.4</td>
<td>CONCEPT OF WAKE POSITION AND DEFICIT ESTIMATION BY ONLINE MODEL UPDATE</td>
<td>14</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Method</td>
<td>16</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Implementation and results</td>
<td>17</td>
</tr>
<tr>
<td>3.5</td>
<td>CONCLUSIONS</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>EXTERNALLY TRIGGERABLE INDIVIDUAL PITCH CONTROL</td>
<td>26</td>
</tr>
<tr>
<td>4.1</td>
<td>INDIVIDUAL PITCH CONTROL</td>
<td>26</td>
</tr>
<tr>
<td>4.2</td>
<td>OPENDISCON IMPLEMENTATION</td>
<td>28</td>
</tr>
<tr>
<td>4.3</td>
<td>SIMULATION RESULTS</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>CLOSED LOOP WAKE STEERING</td>
<td>45</td>
</tr>
<tr>
<td>5.1</td>
<td>OBJECTIVES</td>
<td>45</td>
</tr>
<tr>
<td>5.2</td>
<td>GENERAL CONCEPT OF CLOSED-LOOP WAKE STEERING</td>
<td>46</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Estimation task</td>
<td>46</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Control task</td>
<td>47</td>
</tr>
<tr>
<td>5.3</td>
<td>LIDAR-BASED WAKE TRACKING</td>
<td>47</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Lidar system</td>
<td>48</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Classification of lidar-based wake tracking methods</td>
<td>48</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Wake tracking using a Gaussian shape basis function</td>
<td>49</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Model-based wake tracking</td>
<td>49</td>
</tr>
<tr>
<td>5.4</td>
<td>CONTROLLER DESIGN</td>
<td>51</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Controller design model</td>
<td>51</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Controller design synthesis</td>
<td>53</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Controller analysis</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>RELIABILITY ENHANCING TECHNOLOGIES</td>
<td>58</td>
</tr>
<tr>
<td>6.1</td>
<td>OBJECTIVES</td>
<td>58</td>
</tr>
<tr>
<td>6.2</td>
<td>DESIGN AND IMPLEMENTATION</td>
<td>58</td>
</tr>
<tr>
<td>6.3</td>
<td>SIMULATION RESULTS</td>
<td>61</td>
</tr>
<tr>
<td>7</td>
<td>CONCLUSIONS</td>
<td>70</td>
</tr>
</tbody>
</table>
8 REFERENCES
Figure 1. Concept of sector effective wind speed estimation using blade effective wind speed........ 11
Figure 2. Sector effective wind speed estimates (SEWS, coloured lines) and reference values from
simulation input (black lines). .. 11
Figure 3. Turbine rotor disc, with two sectors, each of 90 degrees.. 12
Figure 4. Wake detection ratio for different ambient wind conditions and turbine yaw angle........ 13
Figure 5. Concept of wind farm control with model updating.. 15
Figure 6. Wind farm layout, top-view. .. 19
Figure 7. Comparison between experimental and modeled turbine power and SE wind speeds...... 19
Figure 8. Predictions of the on-line corrected simplistic model (s) compared to experimental
measurements (exp). .. 21
Figure 9. Downwind turbine power predicted by the wind-sensing method (PWT2, ws), and the
power method (PWT2, p), compared with the experimental one (PWT2, exp), for various
modeling errors. ... 22
Figure 10. Downwind turbine SE wind speeds predicted by the wind-sensing method VWT2, wsleft/
right and the power method (VWT2, pleftright), compared to the experimental ones
(VWT2, expleft/right), for various modeling errors.. 23
Figure 11. Measured wind farm power (PWF, exp) and model-predicted maximum available wind
farm power Pmax, WF. For t>90s, the experiment reaches the optimal solution.................... 24
Figure 12. Individual pitch control principle scheme. .. 28
Figure 13. Three-dimensional vector reference frame. .. 28
Figure 14. Three blade rotating frame of reference. ... 29
Figure 15. Externally Triggerable Individual Pitch Control loop... 30
Figure 16. Calculation of the external maximum control actions introduced in the ikConLoop...... 31
Figure 17. Two seeds of turbulent wind time histories (above rated region)............................ 34
Figure 18. Collective and three blades pitch angles (deg) in above rated region 35
Figure 19. Three blades root moments (kN-m) in above rated region. 36
Figure 20. My and Mz (kN-m) ... 37
Figure 21. Pitch y and pitch z (deg). ... 38
Figure 22. Two seeds of turbulent wind time histories (region transition)................................. 39
Figure 23. Collective and three blades pitch angles (deg) in region transition 40
Figure 24. Three blades root moments (kN-m) in region transition. 41
Figure 25. Blades pitch angle and root moments for uniform wind with extreme wind shear (above
rated region)... 43
Figure 26. Pitch and moments in the non-rotating frame of reference for uniform wind with extreme
wind shear (above rated region). ... 44
Figure 27. The concept of closed-loop wake steering... 46
Figure 28. Measurement trajectory of the scanning lidar system facing downwind. 47
Figure 29. Example of Gaussian basis function fitted to lidar measurement data. The wake position
is assumed at the minimum of the fitted function... 49
Figure 30. The general setup of model-based wind field reconstruction for model-based wake
tracking... 50
Figure 31. An example of the fit of the general model to the lidar measurement data measured in a
field testing campaign... 51
Figure 32. The estimated wake position of different step simulations...................................... 52
Figure 33. The different models obtained from the model parametrization. The color order is
according to Figure 32.. 53
Figure 34. The bode analysis of the designed H_∞ wake redirection controller.......................... 55
Figure 35. The performance analysis of the obtained H_∞ controller ... 56
Figure 36. Time simulations with the nominal controller design model. .. 57
Figure 37. Speed Sensor Manager block.. 58
Figure 38. Speed Sensor Manager block diagram.. 59
Figure 39. Speed sensors measurements for two turbulent seeds in above rated region.................... 62
Figure 40. Generator speed equivalent for two turbulent seeds in above rated region......................... 63
Figure 41. Sensor measurement zoom in at fault to zero.. 64
Figure 42. Sensor measurement zoom in at fault to rated... 65
Figure 43. Speed sensors measurements in at fault to rated... 65
Figure 44. Generator speed equivalent for two turbulent seeds in below rated region....................... 66
Figure 45. Generator electrical torque for two turbulent seeds in below rated region....................... 67
Figure 46. Rotor shaft loads, Mxa, for two turbulent seeds in below rated region............................. 69

LIST OF TABLES

Table 1. State update implementations.. 18
Table 2. Diagnoses map.. 60
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>Blade Effective</td>
</tr>
<tr>
<td>D</td>
<td>Diameter</td>
</tr>
<tr>
<td>IPC</td>
<td>Individual Pitch Control</td>
</tr>
<tr>
<td>SE</td>
<td>Sector Effective</td>
</tr>
<tr>
<td>SEWS</td>
<td>Sector Effective Wind Speed</td>
</tr>
<tr>
<td>WT</td>
<td>Wind Turbine</td>
</tr>
<tr>
<td>CFD</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>TI</td>
<td>Turbulence Intensity</td>
</tr>
</tbody>
</table>
1 EXECUTIVE SUMMARY

As well as power or load management, wind farm control requires specific control mechanisms for the reduction of loads caused by a wind turbine being a part of a farm. Said loads are mainly due to partial wake overlap, which forces blades to get in and out of one or more upwind turbine wakes, with the corresponding increase in fatigue.

CL-Windcon contemplates both the reduction of said cyclic loads via individual pitch control and their avoidance via wake steering. Individual pitch control requires, however, a considerably increased pitch actuator activity, which may offset its benefits in terms of blade loads if used continuously. Something similar may be true about wake steering and the yaw system. It is therefore desirable to be able to activate or trigger these load-reducing control features only when partial wake overlaps actually happen. This deliverable presents estimators for partial wake overlap detection, which may be used for said triggering, as well as a novel closed-loop wake steering methodology. It also presents the triggerable individual pitch control implemented by OpenDiscon, for its use in WP2 and WP3 simulations.

This deliverable also presents a technique for the management of sensor failure, which is demonstrated via simulations in which the generator speed measurement is overridden to simulate a fault. Said technique, which is based on sensor redundancy, may have applications in wind farm control, where sensor redundancy may not only happen by design, but also by collaboration between turbines.
2 INTRODUCTION

Large scale Wind Energy penetration requires efficient farm layouts which optimise production and minimise installation and operating costs. This inevitably results in more and more wind turbines working in or near the wakes of upwind turbines, as denser and more extensive farm layouts prevail.

A wind turbine working in another’s wake experiences not only a reduction in the wind’s kinetic energy which is available for extraction, but also a change in the nature of aerodynamic forces it has to withstand. Said change is typically deleterious, especially when the wake impinges only on a part of the rotor, because that results in the blades cycling in and out of a lower wind speed region, which can cause considerable fatigue load.

Given the increasing likelihood of wake impingement and the corresponding ill effects, mitigation strategies are sought. Individual pitch control (IPC) seems, at face value, especially fitted to the task, since its primary purpose is to reduce cyclic blade loads due to spatially-varying wind conditions. IPC can, however, considerably increase the pitch system’s fatigue, even to the point of it becoming counterproductive to continuously operate a wind turbine with IPC. Another, more novel, option is to steer the impinging wake away from the turbine, so that the spatially-varying wind conditions are avoided altogether. This must, of course, be done by yawing the upwind turbine. Doing so in closed loop may, however, considerably increase the yaw system’s fatigue the same way as IPC can increase the pitch system’s. It seems therefore advisable to use IPC and/or wake steering only when wake impingement is expected, thus trading pitch/yaw system fatigue for blade fatigue only when said trade is advantageous. This requires a method to detect such situations.

Chapter 3 presents wake estimators to detect wake impingement, so that methods such as IPC or wake steering may then be activated to mitigate the negative effects of said impingement.

Chapter 4 presents the IPC implementation in OpenDiscon, which allows smooth activation/deactivation during power production and can, therefore, be used in combination with the estimators in chapter 3.

Chapter 5 presents a novel closed-loop wake steering method. Said method makes it possible to steer the wake away from a downwind turbine.

Finally, chapter 6 presents a technique for the management of sensor failure, which is demonstrated via simulations in which the generator speed measurement is overridden to simulate a fault. Said technique, which is based on sensor redundancy, may have applications in wind farm control, where sensor redundancy may not only happen by design, but also by collaboration between turbines.
3 WAKE ESTIMATORS FOR PARTIAL WAKE OVERLAP DETECTION

3.1 Objectives

This chapter presents two methods to detect the impingement of a wake on a downstream turbine using downstream turbine measurements to facilitate wake steering and/or triggered IPC. Both methods base on an underlying “wind sensing” method, which uses turbine load measurements to estimate the instantaneous flow field at the given turbine. First, a simple method to detect partial wake impingement is presented, which could be used to trigger IPC on the turbine and/or trigger the direction of wake steering at an upstream turbine. Second, a more sophisticated method is described which additionally utilizes a control oriented wind farm flow model (see Deliverable 1.2) to estimate wake position and wake deficit of an impinging wake. Such estimates can be a useful feedback for wake steering and/or wind farm control algorithms as additional wind farm flow information is provided.

This here reported concepts of “wind sensing” and the simple method to detect partial wake impingement have mainly been developed previously [1]. The concepts are reported here because the method to estimate wake position and wake deficit rely on them.

3.2 Concept of sector effective wind speed estimation

It is well known that the turbine response can be used to infer the ambient wind speed by applying a rotor effective wind speed estimation using the torque or power balance estimation technique [2]. Thereby, the ambient (or rotor effective) wind speed is estimated using the usually known relation between turbine power coefficient and tip-speed-ratio. However, no information on the localized flow on the rotor can be obtained.

Here, a method is summarized that uses blade root bending moments and therefore allows the estimation of the local wind speed at the blade position. Thereby each blade acts as a moving sensor. Considering a steady wind condition, an out-of-plane coefficient C_{m_0} is defined as

$$C_{m_0}(\lambda_{BE}, \beta, q_{BE}) = \frac{m}{2\rho AR V_{BE}^2},$$

(1)

where λ_{BE} is the blade effective (BE) tip-speed-ratio, β the blade pitch angle, q_{BE} the BE dynamic pressure to take aeroelastic effects into account, m the blade out-of-plane bending moment, ρ the air density, A the rotor disc area, R the rotor radius and V_{BE} the BE wind speed at the blade. The coefficient can be computed using a turbine simulation model. The coefficient is then used during turbine operation to solve the given equation with V_{BE} as unknown variable giving an estimate of the BE wind speed.
An estimation of the sector effective (SE) wind speed (defined as the mean ambient wind speed in a sector of the rotor disc), is obtained by averaging over an azimuthal interval of interest. The estimate can be updated every time a blade leaves the sector while the zero-order hold can be employed in between two updates. This concept is symbolically illustrated in Figure 1.

![Figure 1. Concept of sector effective wind speed estimation using blade effective wind speed.](image)

As an example, this method is employed on a 3 MW turbine with two sectors (as depicted in Figure 3) on a dynamic simulation using the simulation tool Cp-Lambda [3]. Figure 2 shows estimation results for a turbulent inflow of intensity 10%, generated with Turbsim [4] the following results can be obtained:

![Figure 2. Sector effective wind speed estimates (SEWS, coloured lines) and reference values from simulation input (black lines).](image)

3.3 Concept of wake detection

There may be multiple ways of detecting a wake impingement by analysing the turbine response. Here, a simple model-free method to detect partial wake overlap employing the SEWS estimation method is presented.
Thereto, two sectors can be defined on the rotor disc.

![Figure 3. Turbine rotor disc, with two sectors, each of 90 degrees.](image)

By calculating the relative wind speed difference (scaled by the rotor effective wind speed V_{RE}) between the two rotor sides δ_V, a measure of horizontal shear is obtained.

$$\delta_V = \frac{V_{SE,\text{left}} - V_{SE,\text{right}}}{V_{RE}}$$ \hspace{1cm} (2)

In non-waked cases δ_V will be close to zero assuming no significant prevailing ambient horizontal wind shear. The effect of ambient turbulence, which can lead to horizontal shear measurements has to be eliminated by low-pass filtering ($\bar{\delta_V}$) appropriately.

In waked cases, the $\bar{\delta_V}$ will show a positive or negative values depending on the rotor side of wake impingement. Comparing with a threshold k one can distinguish between a left or right sided wake impingent:

$$\text{wake impingement} = \begin{cases}
\text{left rotor side,} & \text{for } \bar{\delta_V} > k \\
\text{no or full wake,} & \text{otherwise} \\
\text{right rotor side,} & \text{for } \bar{\delta_V} < k
\end{cases}$$ \hspace{1cm} (3)

The choice of k might depend on the required wake detection sensitivity, expected wake deficit and ambient turbulence intensity. Clearly, this method does not allow distinguishing between a full wake impingement and no wake impingement. However, such detection could be obtained by comparing the estimated sector effective speeds (or rotor effective wind speed/turbine power) to a reference value coming from an undisturbed upstream turbine.

As an example, a 3 MW turbine has been simulated with a wake impinging at different lateral position. Thereto, a turbulent wind field has been obtained by superimposing a Larsen wake model (EWTSII model) [5] on a turbulent wind grid (Turbsim). The chosen threshold k was set to 0.12.
Figure 4 summarizes results of the wake detector at ambient wind speed of 8 m/s. Each subplot has a different combination of turbulence intensity (TI) and turbine yaw misalignment (γ) showing the robustness of the method. For different overlaps, each plot displays the detection ratio on the right sector (dark blue bars pointing upwards), and on the left one (light blue bars pointing downwards). The detection ratio is defined as the ratio of the number of time instants when the wake is detected, divided by the total number of time instants in a sequence of a given length (here chosen to be 10 min). For the nominal case (TI=5%, γ=0°) the detection ratio is 1 for wake overlaps of ±0.25D up to ±0.75D. At higher turbulence intensity (TI=10%, γ=0°) the detection ratios do not reach 1 anymore, as the wake deficit is less strong. However, it is important to note that also no false positives at a lateral position of the wake center of ±1.25D are detected. In case the wake detecting turbine itself tries to deflect its own wake, it might operate with significant yaw misalignment. Therefore two cases are shown in which the turbine is misaligned by γ=±20°. Such yaw misalignment has an effect on turbine loads and might therefore disturb the sector effective wind speed estimation used for wake detection. Nevertheless very high detection ratios are obtained and no false positives can occur.

Figure 4. Wake detection ratio for different ambient wind conditions and turbine yaw angle.
3.4 Concept of wake position and deficit estimation by online model update

In addition to the binary wake detector described in Chapter 3.3, a more sophisticated method is described in this chapter. The method utilizes again the sector effective wind speed estimator, but evaluates the estimates by comparing them to a control oriented wind farm flow model (see Deliverable 1.2, Chapter 6 – FLORIS). Thereby, it is possible to estimate the wake position as long as the wake is impinging on a downstream turbine rotor. In case of a relatively full wake impingement, which leads to wind speed changes in both sectors of the downstream turbine, it is also possible to estimate the wake speed. Further turbine measurements, i.e. turbine power or rotor effective wind speed, that are usually also modelled in a control oriented wind farm model can also additionally improve the wake estimation.

The wake estimator could be used to trigger IPC on downstream turbines or as feedback for wake steering and/or wind farm control algorithms. Here, the concept of wake estimation is described for the application in a wind farm control algorithm. Therefore, the wake estimation is directly linked to the updated wake deficit and wake position in the wind farm model. The following work has also been submitted for publication in [6].

Each turbine in a wind farm emits a wake characterized by reduced velocity and increased turbulence, leading to losses in power production and increased loads on downwind turbines. The negative effects of wake interactions may be mitigated by wake management strategies [7]. One possible implementation of such strategies is based on a wind farm flow model: the predictions of the model are used by a controller, whose aim is to energize and/or redirect wakes for improved energy yield and/or reduced loading.

However, the performance of any such model-based control method is inherently limited by the accuracy of the model it is based upon in predicting the behaviour of shed wakes. Unfortunately, any model is wrong – at least in some situations –, especially the simple reduced-order or engineering models used for control synthesis. The only way to improve at run time the fidelity of a model is to correct its predictions on the basis of measurements made on the plant. Figure 5 illustrates this concept.
To correct model predictions, one might think of using standard and already available measurements of power and hub-height wind speed, for example using a Kalman filter. Unfortunately, this in general does not work. In fact, in the case of a wrong power prediction at a downstream wind turbine, one cannot distinguish whether the error is caused by a wrong wind speed in the wake (for example, due to an inaccurate modeling of wake recovery) or by a wrong location of the wake with respect to the impinged rotor disk.

This impasse is solved by using our newly-developed wake observer [1] (see also Chapter 3.2): by using rotor loads, the observer detects the presence of a wake by mapping blade loads into local estimates of the wind speed over sectors of the rotor disk. This way, a wake model can be improved online during operation of the wind farm (according to the scheme of Figure 5), generating high quality predictions of the wake speed and position within the farm. In turn, this improves the control laws computed on the basis of these predictions. Certainly, the wind observer estimates have to be of high accuracy to not introduce additional error. As this work focuses on the model update methodology, the wind observer accuracy is not further discussed in detail.

Figure 5. Concept of wind farm control with model updating
Section 3.4 is organized as follows. Section 3.4.1 formulates the model update approach, the wind farm model and the load-based wind observer. Section 3.4.2 describes different possible implementations of the model-update method. The various options are then tested with reference to experimental measurements obtained on a scaled wind farm facility operated in a large boundary layer wind tunnel. Finally, Section 3.5 summarizes results and conclusions, and gives an outlook towards future work.

3.4.1 Method

State update

The model update method is formulated here based on a generic non-linear static wind farm model. A similar formulation could also be derived for a dynamic model, leading to a standard Kalman filtering problem. The static model is written as

\[
x = f(u, m, p) \tag{4}
\]

\[
y = g(x) \tag{5}
\]

where \(f\) is a non-linear static function. The control inputs are noted \(u\), and include the yaw and induction of each wind turbine in the farm. Measurements of ambient conditions are noted \(m\), and include density and free stream wind speed and direction (typically estimated by the upstream wind turbines). Physical tunable coefficients of the model and the wind farm layout are captured by the vector of parameters \(p\). The model states are indicated as \(x\), here they include the velocity and position of the wake of each turbine. A set of outputs \(y\) is defined by function \(g\). The outputs include the estimated sector effective flow velocities at the downstream rotors.

In general, the predictions of the model states will be in error, due to a lack of model fidelity, mistuning of the parameters or inaccuracies in ambient conditions. This can be corrected by introducing a state error \(e\). The corresponding corrected state \(\tilde{x}\) becomes

\[
\tilde{x} = x + e. \tag{6}
\]

A maximum likelihood estimate of the state error can be readily obtained by solving the following problem

\[
\min_e (z - \hat{y})^T R^{-1} (z - \hat{y}), \tag{7}
\]

where \(z\) are measurements and \(\hat{y}\) the corresponding updated model outputs (\(\hat{y} = g(\tilde{x})\)). For a given fixed measurement error covariance \(R\), this procedure corresponds to a standard weighted least squares.
Note that, as ambient wind conditions are often uncertain, the presented formulation could be extended by including them within the list of states. However, it is also clearly necessary to ensure the observability of all chosen states. For example, a wrong wind direction might not be distinguishable from a wrong wake location. The development of a general formulation for the estimation of wind farm flow model states is a problem of great interest, which is however outside of the scope of the present work.

Wind farm model

The wind farm model (see Deliverable 1.2) includes two components: a wake model and a power model. The wake model is based on the double Gaussian profile proposed by [8], combined with the yaw-induced wake deflection developed in [9]. The combination of the two models gives the evolution of the flow speed within the wake downstream of each rotor disk, together with its spatial location. The power model translates the flow speed into turbine power by computing the mean flow speed at the turbine rotors using a disk-attached grid. The power coefficient is assumed to be constant below rated wind speed, and it is corrected to take into account turbine yaw misalignment with respect to the incoming wind direction.

When implementing the state update for wake speed u, Eq. (6) is modified as $\tilde{u} = u + re$, where r is the wake reduction. Since some wake models (i.e. those that base on a Gaussian wake shape) do not have a well defined wake width, this form of the error avoids changing the ambient wind speed away from the wake.

Wind observer

A load-based wind speed observer [1] (see also Chapter 3.2) is used to estimate the flow at the downstream wind turbine. The observer works by mapping blade loads into local estimates of the wind speed. These are then averaged over sectors of the rotor disk. The resulting sector-effective (SE) wind speed measurements on the left and right parts of the rotor (noted $V_{SE,\text{left}}$ and $V_{SE,\text{right}}$, respectively) are then used in the state update formulation described earlier on.

3.4.2 Implementation and results

Implementation

To evaluate the proposed method, three versions of the state update formulation are implemented for a simple wind farm consisting of two wind turbines. In the notation used below, the upstream wind turbine is indicated as WT1, while the downstream one as WT2.
The *simplistic method* (subscript s) is intended to demonstrate that, by only using power measurements at the downwind turbine ($P_{WT2, exp}$), it is in general not possible to correct at the same time for errors in lateral wake position (d_{WT1}) and speed (u_{WT1}) of the upstream wind turbine. In contrast to the simplistic method, the *power method* (subscript p) is well-posed, as it only tries to correct the wake speed and not its position based on downstream power measurements. The *wind-sensing method* (subscript ws) includes as measurements also the SE wind speeds obtained by the wind observer on the downwind turbine $V_{WT2, exp, SE}^{\text{right/left}}$. This way, the method is able to correct for both speed and position in the wake.

Table 1 gives an overview of the three different approaches. For all cases, the ambient conditions are obtained from the front wind turbine: wind direction is measured by the on-board wind vane, while the ambient wind speed is computed by the rotor effective wind speed corrected for yaw misalignment.

<table>
<thead>
<tr>
<th>Method</th>
<th>Simplistic (*= s)</th>
<th>Power (*= p)</th>
<th>Wind-sensing (*= ws)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x(*)$</td>
<td>$[d_{WT1} \ u_{WT1}]$</td>
<td>$[u_{WT1}]$</td>
<td>$[d_{WT1} \ u_{WT1}]$</td>
</tr>
<tr>
<td>$\dot{x}(*)$</td>
<td>$[d_{WT1} + e_{d} \ u_{WT1} + r_{e_{u}}]$</td>
<td>$[u_{WT1} + r_{e_{u}}]$</td>
<td>$[d_{WT1} + e_{d} \ u_{WT1} + r_{e_{u}}]$</td>
</tr>
<tr>
<td>$\hat{y}(*)$</td>
<td>$[P_{WT2}]$</td>
<td>$[P_{WT2}]$</td>
<td>$[P_{WT2}, P_{WT2, exp}, V_{WT2, exp, SE, left/right}]$</td>
</tr>
<tr>
<td>$z(*)$</td>
<td>$[P_{WT2, exp}]$</td>
<td>$[P_{WT2, exp}]$</td>
<td>$[P_{WT2, exp}, V_{WT2, exp, SE, left/right}]$</td>
</tr>
</tbody>
</table>

Table 1. State update implementations.

Experimental setup

Experimental tests with scaled wind turbine models were used to study the performance of the various state update formulations. The scaled turbines, designed for realistic wake behavior, were operated in the boundary layer wind tunnel of the Politecnico di Milano at an ambient hub-height wind speed of 5.8 m/sec and a turbulence intensity of about 5%. A detailed description of the turbines and the wind tunnel can be found in [10][11]. The wind farm layout is depicted in Figure 6. Wind farm layout, top-view. The two turbines are operated at a longitudinal distance of 4 diameters (D) with no lateral displacement.
The wind farm model parameters p were first manually tuned with the objective of obtaining a good fit of the model predictions with the experimentally measured wake speed, downstream turbine power and SE speeds at various yaw misalignments of WT1 (γ_{WT1}). Figure 7 shows in the upper subplot a comparison between measured (subscript exp) and modeled power at both turbines. The lower subplot shows the SE wind speeds for the left and right sectors of WT2. As the G1 models used in the experiments are not equipped with blade load sensors, blade loads were reconstructed as described in [11]. To account for the fact that the experimental reconstructed blade loads do not contain frequencies above $1P$ (one per revolution), also the SE wind speed obtained from the wind farm model was filtered by best fitting a linear wind field over the turbine rotor disk. Each experimental data point represents the mean value of a 60 sec time recording.

Figure 7. Comparison between experimental and modeled turbine power and SE wind speeds.
Results

An experimental time sequence was obtained by stacking one after the other a number of recordings, each one corresponding to a different constant yaw setting of the front machine. Since the flow is turbulent, wake dynamics induced by turbulent fluctuations, including meandering, are included in the recordings. However, the effects of transient changes from one yaw set point to the next are not, including the corresponding travel-time wake delays, which can be estimated to be approximatively equal to 1 sec. In any case, such delays are not included in a static model as the one used here and, on account of this, all signals were filtered with a moving average of 4 sec.

Figure 8 shows the performance of the simplistic state update method. The upper subplot shows the time history of the upwind turbine yaw position (γ_{WT1}), which changes in three steps from 0 deg to 30 deg. The last yaw position is the approximate point of maximum power production for the present wind farm configuration. The second subplot shows the experimentally measured power produced by the downwind turbine ($P_{WT2,exp}$), together with the state updated model prediction (noted $P_{WT2,s}$, where the second subscript indicates the simplistic formulation). The two lines are essentially identical, indicating an almost perfect prediction of power output by the model. The plot also shows that power increases after each yaw step, which is indeed caused by the wake deflecting laterally and thereby reducing its effects on the downstream rotor.

The third subplot shows the SE wind speeds in the left and right turbine sectors. The experimental measurements from the wind speed observer (solid lines) show the direction of wake deflection: with increasing time and yaw, the flow velocity in the left sector increases, implying that the wake center is moving to the right. The SE wind speeds of the updated simplistic method are also shown on the same plot using dotted lines. These curves reveal that the model-predicted flow velocities, which were not explicitly taken into account by the method, behave in a radically different way from the measured ones. In fact, the simplistic state update method corrects the wake center position by moving it to the left of the downwind turbine, instead of to the right as it should be. The last subplot of Figure 8 shows the corresponding state errors. The large error in wake speed significantly alters the wake deficit, while the error in wake position implies that the wake center is located to the left of the rotor.

The simplistic method is clearly ill-posed, as two states are corrected using only one measurement. Therefore, multiple combinations of wake speed and displacement can be obtained that, although completely wrong, still apparently lead to a very good power estimate. A controller using the predictions of such a model is invariably bound to fail.
Notice that the ill-posedness of the present formulation is rather obvious, by considering that one single global rotor measurement as power cannot distinguish between changes due to a different wake recovery or position. This might not be so obvious when using a more complex farm flow model, as for example a CFD-based approach. However, even in that case, we believe that the problem of ill-posedness would still be present, and might lead to wrong corrections and hence wrong flow predictions.

Figure 8. Predictions of the on-line corrected simplistic model (s) compared to experimental measurements (exp).
Figure 9. Downwind turbine power predicted by the wind-sensing method ($P_{WT2,ws}$), and the power method ($P_{WT2,p}$), compared with the experimental one ($P_{WT2,exp}$), for various modeling errors.

After having illustrated the ill-posedness of the simplistic method, the power and wind-sensing approaches are compared. In both cases, the problem is now well-posed: for the power method, only wake speed is corrected based on measured power, while for the wind-sensing method the presence of the wake estimator allows for the separation of the effects caused by wake speed from those caused by position. To better understand the characteristic of the methods, artificial errors were imposed on the wind farm model. An error in wake recovery and expansion is simulated by changing the modeled longitudinal distance X between the turbines with respect to the one of the experiments. In addition, to simulate an error in the modeled wake position, the lateral distance Y is also varied.
For nine combinations of modeling errors, Figure 9 reports the model-predicted power together with the experimentally measured one. Independently of the modeling error, it appears that power is always well predicted. The SE wind speeds at the downwind turbine are shown in Figure 10. Solid lines represent experimental measurements, dotted lines the power method and dash-dotted lines the wind-sensing method flow speeds. The wind-sensing method provides predictions that are very close to the experimental measurements, independently of the modeling error. In fact, both wake speed and wake position can be corrected independently by this approach. On the other hand, the power method only corrects wake speed. Therefore, it provides good results only in the case of model errors in the longitudinal displacement (middle column of the subplots). However, as soon as there is also an error in the wake position, flow velocities do not match anymore. These discrepancies may translate into significant deficiencies when it comes to utilize the wind farm model for control purposes.

Figure 10. Downwind turbine SE wind speeds predicted by the wind-sensing method ($V_{WT2,ws}^{left/right}$) and the power method ($V_{WT2,p}^{left/right}$), compared to the experimental ones ($V_{WT2,exp}^{left/right}$), for various modeling errors.
To illustrate this point, Figure 11 shows for one of the nine cases considered above the maximum possible wind farm power predicted by the model by yawing the upwind turbine to its optimal position. In the experiment, the optimal position is approximately equal to 30 deg, which are reached after 90 sec. Even though the power method is apparently able to match the downwind turbine power during the experiment, this is in reality based on a wrong prediction of the flow within the farm. Hence, the maximum predicted power is highly overestimated. On the other hand, the wind-sensing method, being capable of a more faithful prediction of the actual flow, provides a realistic estimate on the maximum achievable power throughout the whole test case. This proves the importance of correctly modeling the flow within the wind farm for control purposes.

3.5 Conclusions

A model-based wind farm control algorithm can only be as good as its underlying model. In a realistic scenario, various sources of uncertainties and model defects limit the predictive capabilities of any wind farm flow model. After having calibrated the model offline, the only remaining way to improve this situation is to correct the predictions of the model online, by using measurements obtained on the plant.

In this chapter first a method to estimate the flow speed in different sectors of a wind turbine rotor has been described. The methods utilizes blade root bending moments are becoming more and more available in modern turbines, especially in those equipped with IPC. For those turbines, the method would not require additional hardware and could be implemented by a software upgrade.

In Chapter 3.3 a method is presented that processes the difference in sector effective wind speed estimates on a rotor, to detect an impinging wake. The method is relatively simple and does not require wake models. As a drawback it is only possible to detect the rotor side of wake impingement and tuning of the wake detection threshold parameter might has to be scheduled with ambient wind conditions.

Figure 11. Measured wind farm power ($P_{WF,exp}$) and model-predicted maximum available wind farm power $P_{max,WF}$. For $t>90s$, the experiment reaches the optimal solution.
Chapter 3.4 a model based method for wake detection is presented in the framework of an online wind farm model update method. Therein the sector effective wind speed, estimated by the individual turbine is used to correct the wake location and deficit predicted by the wake model. This updated model is believed to provide accurate information on wake position and deficit within the wind farm.

The developed method can provide valuable information of wake position and reduction. Such information is believed to be of high importance for wind farm control applications. The information on wake position might also be of interest regarding triggered IPC (see Chapter 4). However, it is still unclear whether such implementation can provide any benefit compared to an IPC triggering by turbine loads directly.

The present work is to be considered only as a preliminary study, and further investigations are planned. These include studies of observability in the case of only partially impinging wakes, as well as the investigation of more complex wake interference scenarios. The model-update formulation will also be exploited for designing wind farm control laws using optimal model-based approaches (Delivery 3.6).
4 EXTERNALLY TRIGGERABLE INDIVIDUAL PITCH CONTROL

4.1 Individual pitch control

Individual pitch control, as can be noted by its name, consists on controlling the pitch angle of each blade individually. Wind turbulences and shear cause cyclic loads in very large turbines resulting in high fatigue damages. The huge area encompassed by the turbine blades and the irregular behaviour of wind implies considerable differences on wind speed all along the surface covered by the rotor, especially going up in height. Combined with the rotation of the turbine, blades suffer different loads depending on its position. Due to that, periodically changing loads are obtained in the blades. Controlling each blade pitch angle individually makes possible a considerable reduction of these loads.

Standard turbine models typically include the dynamics of the fixed and rotating turbine components and are thus time varying in nature owing to the changing angular orientation of the rotating blades. Application of the Coleman transformation to the inputs and the inverse Coleman transformation to the outputs of the rotational system, relating blade-pitch angles to blade root bending moments, gives rise to a transformed system defined in a fixed coordinate frame. Such a system is time invariant and hence more amenable to standard feedback control design techniques.

The Coleman transform uses the averaged blade-pitch demand \(\bar{\beta}(t) \), along with the tilt and yaw referred pitch angles, \(\beta_{\text{tilt}}(t) \) and \(\beta_{\text{yaw}}(t) \), respectively, to yield the total pitch angle demands on each blade, \(\bar{\beta}_{1,2,3}(t) \), according to the following expression:

\[
\begin{bmatrix}
\bar{\beta}_1(t) \\
\bar{\beta}_2(t) \\
\bar{\beta}_3(t)
\end{bmatrix} = \begin{bmatrix}
1 & \cos \theta(t) & \sin \theta(t) \\
1 & \cos(\theta(t) + \frac{2\pi}{3}) & \sin(\theta(t) + \frac{2\pi}{3}) \\
1 & \cos(\theta(t) + \frac{4\pi}{3}) & \sin(\theta(t) + \frac{4\pi}{3})
\end{bmatrix}
\begin{bmatrix}
\bar{\beta}(t) \\
\beta_{\text{tilt}}(t) \\
\beta_{\text{yaw}}(t)
\end{bmatrix}
\]

where \(\theta(t) \) is the rotor azimuth angle. The relevant outputs of the turbine are the total blade root flap-wise bending moments, \(M_{1,2,3}(t) \), that are related to the tilt and yaw moments, \(M_{\text{tilt}}(t) \) and \(M_{\text{yaw}}(t) \) via the inverse Coleman transform:

\[
\begin{bmatrix}
\bar{M}(t) \\
M_{\text{tilt}}(t) \\
M_{\text{yaw}}(t)
\end{bmatrix} = \begin{bmatrix}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} \cos \theta(t) & \frac{2}{3} \cos(\theta(t) + \frac{2\pi}{3}) & \frac{2}{3} \cos(\theta(t) + \frac{4\pi}{3}) \\
\frac{2}{3} \sin \theta(t) & \frac{2}{3} \sin(\theta(t) + \frac{2\pi}{3}) & \frac{2}{3} \sin(\theta(t) + \frac{4\pi}{3})
\end{bmatrix}
\begin{bmatrix}
M_1(t) \\
M_2(t) \\
M_3(t)
\end{bmatrix}
\]

\(\bar{\beta}_{1,2,3}(t) \)
The averaged flap-wise blade bending moment is $\tilde{M}(t)$ and has a physical interpretation in terms of the hub loading but is not commonly considered in IPC schemes. Linearization removes explicit dependence of the turbine model upon the averaged quantities $\tilde{\beta}(t)$ and $\tilde{M}(t)$, and so attention needs only be paid to the tilt and yaw signals in the fixed reference frame. The Coleman relationships of relevance to the IPC are defined as follows:

$$\begin{bmatrix} \beta_1(t) \\ \beta_2(t) \\ \beta_3(t) \end{bmatrix} = \begin{bmatrix} \cos(\theta(t)) & \sin(\theta(t)) \\ \cos(\theta(t) + \frac{2\pi}{3}) & \sin(\theta(t) + \frac{2\pi}{3}) \\ \cos(\theta(t) + \frac{4\pi}{3}) & \sin(\theta(t) + \frac{4\pi}{3}) \end{bmatrix} \begin{bmatrix} \beta_{\text{tilt}}(t) \\ \beta_{\text{yaw}}(t) \end{bmatrix}$$

(10)

the inverse transformation:

$$\begin{bmatrix} M_{\text{tilt}}(t) \\ M_{\text{yaw}}(t) \end{bmatrix} = \frac{2}{3} \begin{bmatrix} \cos(\theta(t)) & \cos(\theta(t) + \frac{2\pi}{3}) & \cos(\theta(t) + \frac{4\pi}{3}) \\ \sin(\theta(t)) & \sin(\theta(t) + \frac{2\pi}{3}) & \sin(\theta(t) + \frac{4\pi}{3}) \end{bmatrix} \begin{bmatrix} M_1(t) \\ M_2(t) \\ M_3(t) \end{bmatrix}$$

(11)

The most common approach in the wind turbine individual pitch control relies on a transformation between frames of reference as described in [12]. This approach was originally introduced by Park [13] and has been successfully used for vector control of electric machines. It is perfectly fitted for the wind turbine application since the transfer of the loading from the blades to the fixed structure is in fact a physical transformation between the rotational and the fixed frame of reference.

Figure 12 displays a basic individual pitch control loop. Measured blade loads and rotor azimuth are entered as inputs. Blade loads are measured in the rotational blade frame of reference. They are transformed into the fixed frame of reference using the Park transformation. This transformation results in the loads on the fixed part of the wind turbine structure in two main axes - y and z that are usually referred to as tilt and yaw loads. Park’s transformation also produces a zero-sequence component that accounts for mean values. Such a component is not of interest for load reducing controller so it is usually omitted in individual pitch control applications.

The control algorithm processes variables, M_y and M_z, from the fixed frame of reference. Regular individual pitch control consists of two PI controllers, for moments around axes y and z, respectively. Its algorithm calculates the appropriate pitch angles β_y and β_z for load reduction basing on the inputted moment values. Outputted variables are in the fixed frame of reference. Using Park’s inverse transformation pitch angles are transformed into rotational blade frame of reference. These new variables are the pitch differentials for each blade. To control the rotor speed while reducing loads in blades, pitch differentials are added to the collective pitch angle [12][15].
4.2 OpenDiscon implementation

The control loop implemented by OpenWitcon, ikIpc, for the individual pitch control is showed in Figure 15. It is based in the same principle as the previous scheme, but instead of using Park’s transformation, file ikVector has been implemented to transform frame of reference from rotating to non-rotating. ikVector represents three-dimensional vectors. Blade root moments are expressed in coordinates of the corresponding rotating frames of reference as defined in ikIpc. This is an array of 3 instances of ikVector, each with 3 coordinates. The coordinates in the first ikVector correspond to blade 1 root moments around local axes x', y' and z', in that order. The second and third instances of ikVector have the homologous information regarding blades 2 and 3, respectively.

The non-rotating frame of reference is defined by axes x, y and z. x points downwind, z points up and y complies with the right hand rule. The rotating frame of reference local to blade 1 is defined by axes x', y' and z'. x' points downwind, z' points from the blade root to the blade tip and y' complies with the right hand rule. Therefore, as shown in Figure 13, axes x and x' coincide, and the rotating frame of reference rotates around them.

Figure 12. Individual pitch control principle scheme.

Figure 13. Three-dimensional vector reference frame.
The rotating frames of reference local to blades 2 and 3 are defined by axes \(\{x'',y'',z''\} \) and \(\{x''',y''',z'''\} \), respectively. \(x'' \) and \(x''' \) also coincide with \(x \), \(z'' \) and \(z''' \) also point from their respective blade roots to their respective blade tips, and \(y'' \) and \(y''' \) also comply with the right hand rule. The three rotating frames of reference local to blades 1, 2 and 3, respectively, rotate in unison, and are permanently 120° from each other, as shown in Figure 14. Note that two arrangements are possible. To accommodate different turbine-specific idiosyncrasies, the azimuth angle \(\theta \) is defined as the positive rotation around \(x \) necessary to bring \(z \) to coincide with \(z' \), minus constant angle \(\phi \), which may be specified via ikIpc_init. Similarly, the position of blades 2 and 3 relative to that of blade 1 is defined by parameter \(s \), as shown below. \(s \) may also be specified via ikIpc_init. In the struct ikIpc_init individual pitch control initialization parameters are defined, where angle \(\phi \) corresponds to the azimuth offset, with a default value of 0.0, and \(s \) to the blade order, with a default value of 1. Also My and Mz control parameters are initialized there.

![Figure 14. Three blade rotating frame of reference.](image)

Measured moments My and Mz, along with the demanded values for them and the maximum control actions for pitches y and z are the inputs of the ikConLoop block, which is described in the Deliverable 2.1. There are two ikConLoop blocks, as shown in Figure 15. To calculate the control value for pitch z, measured and demanded My are used as reference and it is limited by maximum pitch z, which is calculated externally with the loop of Figure 16. Whilst to calculate the control value for pitch y, the inputs are measured and demanded Mz and it is limited by maximum pitch y.
The outputted pitch angles are contrasted with their corresponding external pitches. The differences between angles from control and external angles are the pitches around axes y and z. Then they are transformed from fixed to rotating frame of reference, obtaining the pitch differential for each blade. The differential on each individual pitch angle is the necessary change on pitch for each blade to meet the demanded moments. These differences are applied to the collective pitch angle which is used to control the rotor speed.

Figure 15. Externally Triggerable Individual Pitch Control loop.
In Figure 16 it can be observed the block diagram for the calculation of maximum pitch limits that are introduced in ikConLoop. First, the collective pitch angle is subtracted to maximum and minimum pitch angles. The result of the maximum pitch is compared with zero, choosing the minimum value. The same is done with the minimum pitch result, but in this case the maximum value is selected. The absolute values of both resultant variables are compared once again to pick out the least. This value is contrasted one last time with the maximum individual pitch. The smallest one is used as the maximum pitch increment module along with pitch angles y and z from control, outputted by the ikConLoop controller. With the maximum pitch increment module and values of pitches y and z from controller in Figure 15, maximum angles for pitch y and pitch z are calculated. For that the Pythagorean Theorem is used, where maximum pitches and pitches from control are the legs and maximum pitch increment module is the hypotenuse. Maximum pitch y is calculated using pitch z from control and maximum pitch z is calculated using pitch y from control.

To activate the individual pitch control the variable maximum individual pitch must have a value higher than zero. The value of the maximum individual pitch is used to calculate the maximum pitch limits for pitch y and pitch z. If the value of the maximum individual pitch is zero, the value of the maximum pitch increment module would be zero, and consequently, the maximum limits for pitch y and z. Then, external maximum control actions entered in the ikConLoop blocks would be zero. There would not be any differential in the individual pitch angles so a collective pitch angle would be maintained.

Figure 16. Calculation of the external maximum control actions introduced in the ikConLoop.
4.3 Simulation results

To test the individual pitch control the value of maximum individual pitch is changed to non-zero. A triggering file has been implemented in the control, which activates the IPC during the simulation and then deactivates it again setting maximum individual pitch to zero, so the effect of the IPC can be easily studied. The IPC is triggered at the 30th second of the simulation that is when the value of the maximum individual pitch is set to 10. It is held activated for 30 seconds ending in the 60th. In the 25th second the value of the maximum individual pitch starts decreasing in a ramp until its deactivation. For the test, a ramp of 5 seconds with pitch rate of 2 degrees per second has been set to avoid too fast changes that can derive in loads.

Although for the analysis of the IPC a triggering file has been added to OpenWitcon, the way that ikIPC is implemented facilitates its external activation. For that the parameter con.in.maximumIndividualPitch must be modified to the desired maximum individual pitch value. In this case, the triggering file implemented is called with a function, ikMaximumIndividualPitch, where the time variable is inputted and a different value of maximum individual pitch is outputted accordingly. This is a pretty simple testing file that has been implemented for the study, but it serves as example of how an external trigger can be implemented. Changing the parameter externally with a variable from Simulink, a load or wake detection system or the supercontroller would be simple then.

For the simulations above rated wind speeds have been used. Individual pitch control only activates when the turbine is operating at full load in the 3rd region and it is controlled with the pitch angle. Due to that, based on design load case 1.2, six seeds of wind speeds from rated to cut-out have been simulated using a normal turbulence model. Simulation time has been shortened, from the 600 seconds required by the rule, to 100 seconds. This has been considered enough to study the effects of the IPC in the 30 seconds it is activated.

The event is shown in Figure 18, where typical pitch angle variations close to rated wind speed are depicted [12]. There, it can be seen how the pitch angles of the three blades are superimposed to the collective pitch angle before and after the event. When the IPC is triggered the angle of each blade differs, oscillating over the collective pitch angle. This is due to pitch increments from the IPC that are added to the collective pitch control. The pitches change cyclically to get adapted to the rotor position, so that highest pitch values are when the blades position is near axis z. Position on which blades suffer greater loads so an increment of the blade pitch is necessary to reduce lift forces on it. Unlike lowest pitch values, where loads decrease, so the pitch angle is reduced to compensate the load variation.
The effect of the individual pitch control can be appreciated in Figure 19. Staring at the figure it can be noticed a significant difference during the stretch of time IPC is activated, where fewer variations in blades loads are given. To study the effects of the IPC, a comparison of the fatigue loads would be necessary. This would be further investigated in future deliverables.
Figure 17. Two seeds of turbulent wind time histories (above rated region).
Figure 18. Collective and three blades pitch angles (deg) in above rated region.
Figure 19. Three blades root moments (kN·m) in above rated region.
Figure 20 and Figure 21 offers an additional point of interest to be observed. Both figures show the moments and pitches around axes y and z that are inputted and outputted from the IPC controller. Figure 20 exposes the blade root moments in a fixed frame of reference, My and Mz. Here, clear effects of the individual pitch control can be seen. In the 30th second of the simulation, when the IPC is triggered, both moments approach to zero and are maintained around it for the 30 seconds the IPC is activated, before returning to higher values with no IPC.

In Figure 21 appear the pitch angles y and z in the non-rotating frame of reference outputted by the IPC controller. As in the previous figure, the impact of the IPC can be easily examined. In this case, the pitches are non-zero only when the IPC is activated. In the stretch of time IPC is activated, the controller outputs the necessary changes in pitch angle around axis y and z to achieve the load reduction shown in Figure 20.
The individual pitch control activates only with above rated wind speeds, where rotor speed is controlled with the pitch. Due to that, it is interesting to study rated wind speed cases where the transition between control regions coincides with the IPC. This can be seen in Figure 23, where many of the seeds meet this requirement. For below rated speeds, pitch angle keeps its optimal value of 0 to absorb the maximum energy from the wind. When the wind speed increases and the control region changes, the value of the collective pitch angle is increased to reduce loads in the rotor. In three of the cases shown below this event coincides with the IPC being active. The effect of these events is highlighted in Figure 24, where three blade loads are shown. When the region transition occurs, the reduction in blade loads due to the IPC can be clearly seen. This change is not only noticed in loads variability but also in loads value, which falls rapidly after the pitch control is applied.
Figure 22. Two seeds of turbulent wind time histories (region transition).
Figure 23. Collective and three blades pitch angles (deg) in region transition.
Figure 24. Three blades root moments (kN·m) in region transition.
The controller aims to achieve more reliable conclusions about the functionality of the implementation, so more situations have been simulated apart from the design load case 1.2. Most remarkable results have been obtained from simulations of above rated uniform wind combined with an extreme wind shear. The purpose of this is to analyze the influence of wind shear and the behavior of the turbine and the individual pitch control in that kind of situation. Some relevant parameters from a simulation in above rated region are shown in Figure 25 and Figure 26. Extreme wind shear supposes substantial loading irregularities in blades that depend on the rotor position. Due to that is an ideal condition to test the individual pitch control. This can be seen in Figure 25 where three blades pitch angles bear huge variations provoked by the IPC output control actions. Even so, if attention is paid to the plot next to this, three blades root moments, excellent results are obtained. Not only the value of the loads has decreased, furthermore the variation of loads has had an outstanding reduction. Higher speeds and shears result in saturation of pitches y and z that can be possibly fixed increasing the value of the maximum individual pitch set by the trigger, if the saturation does not occur due to hardware limitations.

Moments and pitches in the fixed frame of reference also appear in Figure 26. As it can be seen, most changes occur around axe y. This is because only vertical shear has been applied in this case. The two plots below shows that pitch y increases almost 6 degrees and that M_y suffers a quick fall approaching to zero when IPC is activated. Pitch z and M_z just have slight changes, because, as said before, the wind shear used in the plots is only vertical. For a horizontal wind shear the same results are obtained, but the opposite happens to the parameters in the non-rotating frame of reference, pitch y and M_y are near zero and pitch z and M_z have negative values.
Figure 25. Blades pitch angle and root moments for uniform wind with extreme wind shear (above rated region).
Figure 26. Pitch and moments in the non-rotating frame of reference for uniform wind with extreme wind shear (above rated region).
5 CLOSED LOOP WAKE STEERING

With the growing size of wind turbines and a denser spacing of them in wind farm, the need of new
technologies to mitigate flow interactions has arisen. In the wake of a wind turbine, the wind speed
is reduced and moreover, due to the energy extraction and mixing, the turbulence intensity is
increased. Thus, if a second turbine is impinged by a wake the structural loads are increased and the
power production of that second turbine is decreased compared to the nominal operation in free
stream. Moreover, if the wake impingement is only partially on the rotor due to a partial wake
overlap, the structural loads are even higher since the wind turbine experiences heavily
inhomogeneous inflow conditions.

The concept of open-loop wake steering have been introduced as a methodology to deflect the wake
by either yawing the wind turbine or by cyclic blade pitching such that wake overlaps are avoided,
see [17]. In various investigations the concept has been investigated and the main advantages have
been shown, see [18][19][20][21].

Wake steering, in an open-loop approach, contains the following drawbacks:

Optimized yaw angles are applied in an open-loop approach. Since the yaw angles are computed with
assumptions, e.g. on atmospheric conditions, wind speed, or using a reduced-order model, the
approach does not guarantee that the wake is going to the desired direction. Thus, the
match/mismatch of the assumptions highly influences the control performance.

In an open-loop methodology there is a high sensitivity against disturbances. This means that any
disturbance, e.g. cross wind or shear, will influence the wake position and therefore the achieved
performance.

The concept of lidar-based closed-loop wake redirection, which was first introduced in [22] and [23],
can help to overcome the drawbacks and is presented in the following.

5.1 Objectives

The main objective of lidar-based closed-loop wake steering is to steer the wake to a desired position
by the usage of information provided by a lidar system and a controller that commands the yaw
angle and uses the desired and the estimated position information.

In the following first, the general structure of the concept is presented, as well as the different
subparts, the controller and the estimation task. Then, the implementation and considerations are
presented and finally, conclusions are given.
5.2 General concept of closed-loop wake steering

The lidar-based closed-loop wake redirection concept consists of two main tasks: 1) the estimation task and 2) the control task. Figure 27 gives the closed-loop scheme of the concept. The control-loop is closed locally on the turbine level which has advantages in terms of scalability, implementation and communication. Nevertheless, the estimation task could also be realized on farm level.

![Diagram of closed-loop wake steering](image)

Figure 27. The concept of closed-loop wake steering.

The concept shown in Figure 27 mainly consists of two parts: the estimation task and the control task. The estimation task uses the lidar measurements and provides an estimation of the wake position to the control task. The control gets the wake position from the estimation task together with a demanded position and commands the yaw angle to the wind turbine.

In the following, the two tasks are described in detail.

5.2.1 Estimation task

The estimation task deals with providing an estimation of the wake position from lidar measurement data. In our case we assume a downwind facing scanning lidar system on the wind turbine nacelle. The lidar system scans a defined measurement trajectory and provides the measurement data to the control system. Figure 28 visualizes the scan configuration of the lidar system. In this setup, a grid of 7x7 grid points is scanned with a scanning frequency of 1 Hz. Five distances are measured instantaneously and send to the estimation system. Later, in section 5.3 methodologies are presented to estimate the wake position from the lidar measurement data.
5.2.2 Control task

The control task deals with everything related to the wake redirection controller. Generally speaking, it provides the yaw command to the wind turbine by comparing the actual wake position to the demanded wake position and using this information in the controller (Figure 27 for the general structure and the inputs and output). There are different approaches how the controller can be realized. The main challenges are in the robustness of the controller because of having a lot of unmodeled dynamics in the flow, and the controller design. In section 5.4 a H_{∞} controller will be designed and analyzed.

5.3 Lidar-based wake tracking

As already pointed out, the lidar-based wake tracking, estimates the wake position from the lidar measurement data. In the following, first the lidar measurement principle is reviewed, then different methodologies are classified and described, and finally a conclusion is given.
5.3.1 Lidar system

A lidar system is a laser-based measurement device. It uses the Doppler principle to obtain wind speed information from the backscattered laser light. A lidar system generally has two limitations in its measurement principle: 1) the lidar measures only a projection of the flow components onto the laser beam vector, 2) the lidar’s volume averaging.

The lidar system only receives parts of the flow components because it uses the backscattered light to obtain a wind speed measure. Thus, only the projection of the wind flow on the laser is measured, the line-of-sight wind speed, \(v_{los} \). Real lidar systems can’t measure at a dedicated point in space as the idealized measurement equation would impose; however, they measure in a certain volume around the measurement position along the laser beam. This yields the volume measurement equation of a lidar to

\[
v_{los,i} = \frac{1}{f_i} \int_{-\infty}^{\infty} \left(x_{a,i}u_a + y_{a,i}v_a + z_{a,i}w_a \right) W(a) \, da,
\]

at the measurement point \([x, y, z]_i\) with the focus distance \(f_i = \sqrt{x_i^2 + y_i^2 + z_i^2} \), the range weighting function \(W(a) \), that depends on the lidar system, see [24], and the flow vector \([u, v, w]_i\).

5.3.2 Classification of lidar-based wake tracking methods

The objective of lidar-based wake tracking is to obtain wake position estimation from lidar measurement data. There are different methodologies which approach the task with different approaches. Generally, they can be grouped into two categories: template fitting methods and wake model based method.

The general idea of template fitting methods, are to fit shape or pattern properties, like e.g. a Gaussian shape or a circular wake shape, to the measurement data. The advantages are the simplicity of the methods. A disadvantage arises from the discrepancy between assumption and reality. This means the methodology can mislead gravely if the assumptions are not valid or only valid in specific cases. Furthermore, the actual wake can’t be recovered from the information.

The model-based wake tracking goes a more systematic way. It uses a simplified wake model and a lidar model, to provide a general model for the lidar measurements. This general model is then used in a least-square optimization to fit best to the measurement data. This approach is called wind field reconstruction and has already been tested in different applications, see [25][26].

In the following, two examples of lidar-based wake tracking are presented, one pattern fitting method and one model-based approach.
5.3.3 Wake tracking using a Gaussian shape basis function

The wake tracking with a Gaussian shape function is a pattern fitting based methodology. A basis function is used to fit it to the measurement data.

As basis function

\[f(y) = u_a \exp \left(- \frac{(y - \mu_y)^2}{2\sigma_y^2} \right) \]

is used with \(u_a \) the amplitude of the wake deficit, \(\mu_y \) the horizontal wake position, and \(\sigma_y^2 \) a measure of the wake width, according to [27]. The basis function is then fitted to the lidar measurements. Figure 29 gives an example of how the basis function is fitted to lidar measurement data from a measurement campaign.

![Fitted "Gauss1D" function to wind speed](image)

Figure 29. Example of Gaussian basis function fitted to lidar measurement data. The wake position is assumed at the minimum of the fitted function.

5.3.4 Model-based wake tracking

As already pointed out, the model-based wake tracking approach, uses a wake model and a lidar model to provide a general model of the measurement setup. This model is then used in an optimization framework to best fit the model to the measurement data. In the following the model-based wake tracking approach presented in [23] is described.
As described before the general idea is to fit a reduced-order wake model augmented with a lidar measurement model to the lidar measurement data. Figure 30 shows the general setup of the approach. An optimizer is used to best fit the “simulated” line-of-sight lidar measurements $v_{los,s}$ to the lidar measurement data $v_{los,m}$ to obtain the best estimation of model parameters (here named as best fit wind field characteristics).

In the following, first the lidar model is described, and then the wind field model including the wake model is briefly presented.

For the lidar model description the volume averaging is neglected. Thus, the lidar measurement equation is approximated with a point measurement equation

$$v_{los} = \frac{1}{f_i}(x_i u_i + y_i v_i + z_i w_i)$$ \hspace{1cm} (14)

at the measurement point $[x, y, z]_i$, with the flow vector $[u, v, w]_i$ and the focus distance f_i.

The wind field model consists of an ambient homogeneous wind field and a linear vertical shear. Furthermore, a reduced-order wind field model is used that superpose the wind field. The wind field model results to

$$\begin{bmatrix} u_i \\ v_i \\ w_i \end{bmatrix} = \begin{bmatrix} v_0 + z_i \delta v + \Psi_{u,i} \\ \Psi_{v,i} \\ 0 \end{bmatrix}$$ \hspace{1cm} (15)

with v_0 the wind speed, δv the vertical shear, and $\Psi_{u,i}$ and $\Psi_{v,i}$ the u- and v- component of the wake model (depending on the orientation and the model choice) at point $[x, y, z]_i$.

For the reduced-order wake model, the dissipation-based wake model is used. We further refer to deliverable D1.2 for a detailed description of it.
Figure 31 gives an example how the methodology works and compares the result of the fit to the measured field data. In the first row, the output of the model is shown, in the second row, the measurement data is seen. The data was measured in five different downstream distances, from 0.6 to 1.4 of the rotor diameter. The estimated wake position is marked with the black dot.

![Figure 31. An example of the fit of the general model to the lidar measurement data measured in a field testing campaign.](image)

5.4 Controller design

The main task of the closed-loop wake redirection controller is to use the estimated and the desired wake position and command a yaw angle, such that the error between them becomes zero. Thus, in a closed-loop control the wake position is stabilized at its desired position. In the following, first the controller design model is presented and next a H_{∞} controller is designed. Then, the obtained controller is analyzed in time and frequency domain. The simulations are performed with WFSim, [28], a two dimensional medium-fidelity Navier-Stokes flow model for wind farm applications. For a detailed description of the model we refer to D1.2. (Deliverable on control-oriented wake/wind farm models)

5.4.1 Controller design model

A controller design model is needed to design H_{∞} controller. Therefore, a linear model is needed that gives the input output dynamics of the wake redirection. For the model, the input is the yaw misalignment angle of the wind turbine that is defined relative to the wind direction. The output is the estimated wake position of the lidar system at a certain measurement distance. Here, a measurement distance of 2.5 times the rotor diameter (D) is assumed.
There are different methodologies and approaches for obtaining a controller design model. Examples for closed-loop wake redirection control are the reduced order modeling of dynamics and combination with a nonlinear gain function in [22], or model parameterization techniques as done in [29]. Both approaches give a linear model representation of the form

\[G_i(s) = K_i D_i(s) \]

(16)

With \(K_i \) the gain that gives the static wake deflection at a defined yaw angle and \(D_i(s) \) the linear dynamics. The \(i \) index labels the linearization point \(\gamma_i \) at wind speed \(u_i \). Here, the model parametrization is briefly reviewed, because it has also applicability to experimental testing scenarios and can more easily unknown dynamics.

The model parameterization approach uses experimental data, e.g. step simulations, to obtain a controller design model. Here, step simulations are performed with the simulation model, WFSim.

![Figure 32. The estimated wake position of different step simulations.](image)
Figure 32 gives the results of different step simulations. A step on the yaw misalignment is applied and the wake position is estimated at 2.5 times the rotor diameter downstream of the wind turbine. The step simulations show different static behavior (difference in gain) and differences in the dynamic response (dynamics). A model identifications approach is then used to obtain linear dynamic models from the step responses. Here, grey box identification is used, where the number of poles and zeros are predefined and the best model representation is found by the algorithm. Figure 33 shows the bode analysis of the obtained models. For the model identification a number of $n_p = 5$ poles and $n_z = 2$ zeros are defined. The model order is chosen to achieve a good model accuracy of with the experimental data while having a low minimum order.

![Bode Plot](image)

Figure 33. The different models obtained from the model parametrization. The color order is according to Figure 32.

5.4.2 Controller design synthesis

The H_{∞} controller design synthesis is applied to the wake redirection control problem in the following. First, the general design procedure is presented and then the design criteria for the controller are discussed.
The advantage of H_∞ controller design synthesis is to directly shape the frequency behavior of performance outputs of the controller during the design procedure. This means, a performance output like e.g. the output disturbance sensitivity can be directly shaped (within the feasibility of the problem). The used performance outputs are the output sensitivity S and the controller sensitivity U that are

\[
S = \frac{1}{1 + GK} \quad (17)
\]

\[
U = \frac{K}{1 + GK} \quad (18)
\]

\[
T = \frac{GK}{1 + GK} \quad (19)
\]

where G is the plant model and K the controller. The tracking behavior T is indirectly considered by

\[
S + T = 1 \quad (20)
\]

The shaping is done by applying performance weights to the performance measures. Altogether, this yields the following minimization problem for the H_∞ controller design

\[
\min_K \left\| \begin{array}{c} W_S S \\ W_T T \\ W_U U \end{array} \right\|_\infty \quad (21)
\]

With the weights W_S, W_T, and W_U. The H_∞ controller K then minimizes the minimization problem.

In the following the criteria of the weights are discussed. Two main points need to be considered when defining the weights, the zeros in the plant model (which can be explained by the delay time between actuation and measurability of the action at the lidar measurement location), and the damping at higher frequencies. Therefore, the following weights are chosen in the H_∞ controller design process: For the output disturbance sensitivity, the weight

\[
W_S = s + w_B \frac{M}{s + w_B A} \quad (22)
\]

With A the desired disturbance attenuation inside bandwidth, w_B the desired closed-loop bandwidth, and M the desired bound on $\|S\|_\infty$ and $\|T\|_\infty$ is chosen. The weight on the controller sensitivity is set to

\[
W_U = \frac{C^4}{2} s^2 + \sqrt{2} w_1 s + w_1^2 \quad \frac{s^2 + \sqrt{2} w_2 s + w_2^2}{s^2 + C \sqrt{2} w_1 s + (C w_1)^2 s^2 + C \sqrt{2} w_2 s + (C w_2)^2} \quad (23)
\]
With \(w_1 \) and \(w_2 \) the design frequencies for controller sensitivity and \(C = 1000 \). In this case, the following values have been set: \(w_1 = 0.01 \) and \(w_2 = 0.05 \).

5.4.3 Controller analysis

A \(H_\infty \) controller is designed with the performance weights as previously described. In the following first the controller is analyzed in frequency domain. Further, the closed-loop performances are evaluated. Then in a last step, nominal closed-loop step responses are considered in two different setups. In a nominal setup first, and second, in two setups with different disturbances. In Figure 34 a Bode analysis of a \(H_\infty \) controller is presented. The controller design model was obtained at a wind speed of \(u = 8 \text{ms}^{-1} \) and a yaw misalignment change from 0 to 5 deg. The performance of the controller is evaluated in Figure 35. In the he figure, the sensitivity against output disturbances and the controller sensitivity are presented. Further, the design margins used in the controller design process are plotted in black. The controller achieves its desired performance.

![Bode analysis of a \(H_\infty \) controller](image)

Figure 34. The bode analysis of the designed \(H_\infty \) wake redirection controller.
In the next step a time simulation is performed in which disturbances are applied to verify the controller performances. In Figure 36 the time simulation results are compared. Two simulations are performed, a nominal undisturbed and a nominal disturbed simulation case. In both cases the controller performs well and steers the wake position to the desired position, marked in grey.

![Graphs showing controller sensitivity and sensitivity](image)

Figure 35. The performance analysis of the obtained \(H_{\infty} \) controller.
Figure 36. Time simulations with the nominal controller design model.
6 RELIABILITY ENHANCING TECHNOLOGIES

6.1 Objectives

To enhance security and reliability of wind turbines, it is essential to combine monitoring technologies with the turbine control. These technologies encompass a large variety of sensors and information transmission methods. Sensors are constantly communicating with the controller, providing the necessary information for the optimal operation of the turbine. Due to that, the detection of faults in sensors is vital to avoid damages in the turbine and assure the quality of the supplied energy. Usually, when a fault is detected in a sensor, the controller will shut down the turbine for security reasons interrupting the energy production. The following control method has been implemented so that the operation break can be avoided without losing effectiveness of the controller, enhancing the reliability of the turbine.

6.2 Design and implementation

The basis of this method is the redundancy of the generator speed monitoring. The use of the measurements of three sensors is proposed to get the next variables: generator speed, rotor speed and azimuth \[30][31][32].

The speed sensor manager takes the generator speed, rotor speed and azimuth angle measurements, cross-checks them and outputs a usable generator speed signal when possible.

These three variables are compared using the relation between them:

\[
\text{RotorSpeed} = \frac{\text{GeneratorSpeed}}{\text{GearboxRatio}} \quad \rightarrow \quad \text{GeneratorSpeed} = \text{RotorSpeed} \cdot \text{GearboxRatio} \quad (24)
\]

\[
\text{Azimuth} = \int \text{RotorSpeed} \cdot dt \quad \rightarrow \quad \text{GeneratorSpeed} = \frac{d\text{Azimuth}}{dt} \cdot \text{GearboxRatio} \quad (25)
\]

These calculations are pretty accurate approximations; just little mechanical losses of the gearbox are not taken into account. Due to that, some tolerance is necessary when comparing the measurements of the sensors, which is done during a determined interval.
The measurements are contrasted by the sensor diagnoser block in Figure 38. Instances of this type are sensor diagnosers based on 3-way comparison. They take 3 different sensor signals for a single physical quantity and decide, based on their differences over time, which are sound.

If all three signals are similar, the generator speed is used. Dissimilarities are used for sensor failure diagnosis and, if the generator speed sensor is found to have failed, the rotor speed is used instead. It is considered a fault if the differences between the measurements are larger than the tolerance for longer than N sampling interval.

![Figure 38. Speed Sensor Manager block diagram.](image-url)
The diagnoses are, 1 for sound sensors and 0 for faulty ones. Depending on the diagnoses the returned statuses are:

- 0: all sensors agree
- -1: bad generator speed
- -2: bad rotor speed
- -3: bad azimuth
- -4: two or more bad signals

Generator speed equivalent given by the speed sensor manager varies with the returned status. In Table 2 conditions for different outputs are showed. The value of the generator speed equivalent matches one of the inputs entered in the MUX block depending on the status. The measured generator speed is the first input (ok 1), the rotor speed the second (ok 2) and the azimuth the third (ok 3). This last value is not used as an output.

<table>
<thead>
<tr>
<th>ok 1</th>
<th>ok 2</th>
<th>ok 3</th>
<th>status</th>
<th>MUX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-3</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-4</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-4</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2. Diagnoses map
6.3 Simulation results

To test the speed sensor block a simple generator speed sensor fault introduction facility is provided. The parameters governing this fault are in \textit{ikClwindconInputMod.c}. In this file a generator speed measurement of \textit{val} is enforced after \textit{N} sampling intervals. The fault happens in the 100th second (\textit{N}=10000, \textit{T}=0.01 s) and two erroneous generator speed measurements have been tested, 0 rad/s and 50 rad/s. To avoid false positive error detection, \textit{N} sampling interval of 2 has been set with a tolerance of 3 rad/s. Like that, errors provoked by initial values of the simulation and by deviation between measurements are avoided. An \textit{N} sampling interval of 2 involves a little delay in the fault detection. During that delay, an erroneous measurement is used for the generator speed equivalent, which involves a wrong control of the turbine. Thus, when the fault is detected the controller responds to the sudden change provoking some transient oscillations. For above rated speeds, deviation occurred due to the detection delay results in a slight reduction of the pitch angle, which is rapidly fixed provoking few transient oscillations and negligible loads in blades and shaft. Rated and below rated loads instead are controlled by electrical torque. This is modified much faster than pitch angle, so its correction implies pretty high moments in rotor shaft.

For the simulations, six seeds of wind speeds from cut-in to cut-out have been considered with a normal turbulence mode, as dictated by design load case 1.2. A total run time of 200 seconds has been simulated, instead of the 600 seconds required by the rule, enough to show the impact of the fault detection implementation.

Figure 39 shows measurements of the three sensors. Signals 2 and 3, from rotor speed and azimuth respectively, have really nearby measurements so they look overlapped. Signal 1 samples the measured generator speed, which is having a breakdown in the 100th second. The event moment is noticed because the value of signal 1 falls to zero. Thenceforth, signal 2 is outputted as the generator speed equivalent. So, half of the data coincides with signal 1 and the other half with signal 2, coupling both data in a single output variable.
Figure 39. Speed sensors measurements for two turbulent seeds in above rated region.
Figure 40. Generator speed equivalent for two turbulent seeds in above rated region.
Figure 42 zooms in the fault instant for a better perspective. There are plotted the three signals measurements and the generator speed equivalent. It can be seen that generator speed equivalent, purple dotted line, overlaps signal 1, blue line, until the fault is detected. Due to that, when the fault happens generator speed equivalent falls to zero before the fault is identified. Then, generator speed equivalent equals signal 2, red line. Signals 2 and 3 are very near from each other. After the fault, signal 3, yellow line, continues close to the generator speed equivalent, which is superimposed to signal 2. Another observation is that signal 1 oscillates a little more than the other two. This can be glimpsed zooming in Figure 40. The first half of the plot has slightly more ripple than the rest, coinciding with the part where signal 1 performs correctly.

In Figure 42 the faulty sensor measurement approximates to the rated generator speed. Therefore, it takes longer to the sensor diagnoser to detect the fault. This implies that during the detection time a wrong generator speed equivalent value is used by the control so that the rotor speed moves away from its nominal value. Consequently, when the fault is detected and signal 2 is outputted the controller needs to adapt the actions to restore the rotor speed. This, results in rapid changes in pitch angle to control it, but due to the proximity of the speed values in full-load operation and the limits in pitch rate changes do not involve any abrupt variation or increase in blades and shaft loads.
Figure 42. Sensor measurement zoom in at fault to rated.

Figure 43 and Figure 44, as figures above, show signal measurements and outputted generator speed equivalent. These cases are for below rated speed, unlike the previous ones that are for above rated speeds. For these probes turbine is operating in region 2, where a torque control is applied to control the rotor speed maintaining pitch angle in its optimum value, 0. This control mode is faster so fewer variations and deviations are given between the three measured signals, but the change between generator speed equivalent signals is more obvious. This can be clearly seen in Figure 44 due to the oscillations provoked by the alterations in torque during the fault detection. In this case, while blade loads are neglectable, rotor shaft suffers considerably more loads because the turbine is operating with partial load, so rotor speed is controlled with the electrical torque and blade pitch is kept constant. When the fault is detected the electrical torque is changed much faster than pitch angle, provoking the high loads in rotor shaft for a few moments. This fact is shown in Figure 45 and Figure 46, where the rapid change in generator torque and the loads provoked in the shaft are plotted. However, these loads are far from being harmful for the turbine, and due to the rarity of such fault event, fatigue damages are out of consideration.
Figure 43. Speed sensors measurements for two turbulent seeds in below rated region.
Figure 44. Generator speed equivalent for two turbulent seeds in below rated region.
Figure 45. Generator electrical torque for two turbulent seeds in below rated region.
Figure 46. Rotor shaft loads, Mxa, for two turbulent seeds in below rated region.
Chapter 3 has considered the problem of model-updating, in the context of a well-known static engineering wake model. The model can predict the flow speed within the wake, as well as its geometry and spatial location depending on environmental and wind turbine operational parameters. Three possible implementations of the method have been considered. The first tries to correct model predictions by using power measurements on the downstream turbine. Unfortunately, the method was shown to fail because of its inability to distinguish between effects caused by wake speed or position. The second approach uses power to correct only for wake speed. This avoids the problem being ill-posed, but clearly cannot correct the predictions of the model whenever the wake position is in error, showing significant errors in maximum power predictions. Finally, a novel method based on a wake observer is proposed. The wake observer is capable of estimating the local wind speeds on the left and right sectors of the rotor disk. Clearly, the two velocities carry information on the actual location of the wake with respect to the affected rotor. This allows one to distinguish between speed and location, and results in the correct update of both states of the engineering model. The method can provide valuable information of wake position and reduction, which may be of high importance for wind farm control applications. It may be interesting for triggering IPC from chapter 4. IPC demonstrated to reduce considerably loads for above rated wind speeds and different wind conditions. It makes possible being triggered not only by wake detection, but also other conditions such as turbine loads.

In chapter 5 the lidar-based closed loop wake steering control concept has been presented. It aims at redirecting the wake position to a desired position using lidar wind speed measurements, an estimation of the position from the lidar measurement data and a controller that uses the estimation to command the yaw misalignment. First the concept is described with its two tasks, the estimation task and the controller task. The objectives of the two tasks have been described and solutions to them are presented. Altogether, the concepts enable a closed-loop wake redirection with its benefits. However, the estimation of the wake position from the measurement data is crucial for the concept. In the controller task, a H_{∞} controller design approach is described and the controller is derived. It is then analyzed in frequency and time domain with closed-loop simulations. Altogether, the concept is described and a solution to the weaknesses of the open-loop approach has been presented. Simulations with different fidelities will be performed in deliverable 3.3 (D3.3).

Finally, chapter 6 has described a fault tolerant control method. Based on the redundancy of the turbine speed measurement, three different sensor measurements have been cross-checked, so that a fault in one sensor can be detected by the comparison with the other two and the faulty measurement can be substituted by a correct one. This method has seemed to be effective in most cases, just provoking little disturbances in below rated speed cases due to the delay of the detection and the fastness of the turbine control in that region.
REFERENCES

